为了提高散热器的性能,许多研究论文集中于散热器几何形状的设计和优化,这是改善传热的决定性因素。提高散热器(或热交换器)性能的基本方法是优化耦合的流体流动和热传递。考虑三个优化级别:尺寸优化、形状优化和拓扑优化(TO)。对于散热器尺寸优化,通道或翅片直径是需要调整或定义的变量。对于预定义的形状,尺寸优化是最简单的方法,因为它需要较少的设计变量。但是,它不允许获得具有更复杂形状的最佳几何形状。散热器形状优化涉及优化散热器通道或翅片的形状,可以是圆形、矩形、不规则形状等。该方法比尺寸优化方法更灵活,因为其解空间包含了尺寸优化的解空间,尽管程序更复杂。散热器的拓扑优化 (TO) 没有所需的预定义几何形状。可以在设计域中创建各种空隙大小和形状,以生成不同的 TO 几何形状。解空间TO包括尺寸优化和形状优化的解空间。因此它是自由度最大的优化,但同时也是复杂度最大的优化。
摘要 设计和实施用于选择性传输离子和分子种类的先进膜配方对于创造下一代燃料电池和分离装置至关重要。有必要了解与设备操作相关的时间和长度尺度上的详细传输机制,无论是在实验室模型中还是在实际操作条件下的工作系统中。中子散射技术包括准弹性中子散射、反射率和成像,在世界各地的反应堆和散裂源设施的光束线站实施。随着新的和改进的仪器设计、探测器方法、源特性和数据分析协议的出现,这些中子散射技术正在成为设计、评估和实施燃料电池和分离装置先进膜技术的主要研究工具。在这里,我们以 ILL 反应堆源(法国格勒诺布尔劳厄-朗之万研究所)和 ISIS 中子和介子散裂源(英国哈威尔科技园区)为例,描述了这些技术及其开发和实施。我们还提到了世界各地其他设施正在进行的类似开发,并描述了一些方法,例如将光学和中子拉曼散射、X 射线吸收与中子成像和断层扫描相结合,并在专门设计的燃料电池中进行此类实验,以尽可能接近实际操作条件。这些实验和研究项目将在实现和测试新的膜配方以实现高效和可持续的能源生产/转换和分离技术方面发挥关键作用。
2.7.2。 Device intended to benefit a relatively small group of patients in the treatment or diagnosis of a disease or condition (e.g., orphan devices and devices for paediatric use) ............................ 52.7.2。Device intended to benefit a relatively small group of patients in the treatment or diagnosis of a disease or condition (e.g., orphan devices and devices for paediatric use) ............................ 5
静电掺杂旨在用超薄 MOS 结构中栅极诱导的自由电子/空穴电荷取代施主/受主掺杂剂种类。高掺杂的 N + /P + 端子和虚拟 PN 结可以在未掺杂层中模拟,从而促进具有丰富功能的创新可重构设备。其独特优点是载流子浓度和极性(即静电掺杂)可通过栅极偏置进行调整。在介绍基础知识之后,我们将回顾采用新兴或成熟技术(纳米线、纳米管、2D 材料、FD-SOI)制造的静电掺杂设备系列。通过强调与传统物理二极管的区别,讨论了 Hocus Pocus 二极管的多个方面。静电掺杂产生了许多具有出色记忆性和锐切换能力的频带调制设备。详细描述了其概念、内在机制和典型应用。
Device Type of Device Automated Neuropsychological Assessment Metrics (ANAM) Computerized neurocognitive assessment Immediate Post-concussion Assessment and Cognitive Testing (ImPACT) Computerized neurocognitive assessment DANA Computerized neurocognitive assessment EyeBOX Eye tracking Eye-SYNC Eye tracking Banyan Brain Trauma Indicator Blood-based biomarkers i-STAT TBI Plasma Test Blood-based biomarkers I-STAT TBI全血液测试基于血液测试的生物标志物TBI测试与建筑师I1000SR系统血液基于血液的生物标志物Vidas TBI基于血液基于Brainscope brainscope tbi TBI电动机生理学(EEG)Infrascanner 2000&2500近光谱谱系
摘要:从材料和功能耐久性的角度研究并报告了热老化、疲劳和热机械老化对柔性微电子 12 器件的影响。研究了封装材料和基板的降解 13 机制。分析了封装材料和基板 14 材料的性能变化,并确定了它们在柔性器件失效机制中的关系。15 在热老化条件下,树脂的硬化与测试载体中的分层有关,这会导致功能性电气性能的丧失。降解是由于在 120°C 的热氧化过程中发生了突出的交联 17 反应。疲劳 18 应力测试后,树脂会发生适度硬化。虽然后者的硬化同样与交联反应有关,但在这里,硬化 19 不能由树脂的热降解引起,因为所用的应力频率很低。20 相反,热机械耦合发生在两个阶段。在温和条件下,降解 21 机制对应于热老化和疲劳过程的综合效应。在更严酷的热机械条件下,断链机制变得更加有效,并导致树脂软化 23。24
半导体光电设备,能够以紧凑且高效的方式将电力转换为光线或相反的光线为电力,代表了有史以来最先进的技术之一,该技术具有广泛的应用范围内的现代生活。近几十年来,半导体技术已从第一代狭窄带隙材料(SI,GE)迅速发展为最新的第四代超宽带隙半导体(GAO,Diamond,Aln),其性能增强以满足需求的增长。此外,将半导体设备与其他技术合并,例如计算机辅助设计,最先进的微/纳米织物,新型的外延生长,已经显着加以促进了半导体Optoelectronics设备的发展。在其中,将元浮面和半导体的光电设备集成,为电磁反应的芯片控制打开了新的边界,从而可以访问以前无法访问的自由度。我们回顾了使用集成的跨侧面的各种半导体光电设备在芯片上控制的最新进展,包括半导体激光器,半导体光发射器,半导体光电镜像和低维度的半导体。MetaSurfaces与半导体的集成提供了晶圆级的超级反理解决方案,用于降低半导体设备的功能,同时还提供了实施实际应用中实现实际应用中的实用平台。
保留所有权利。未经许可不得重复使用。(未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此预印本的版权持有者此版本于 2025 年 1 月 25 日发布。;https://doi.org/10.1101/2025.01.23.25321032 doi:medRxiv preprint
测量依赖性量子密钥分布(MDI-QKD)是一种消除所有检测器侧通道的量子通信技术,尽管目前受到实施复杂性和较低的安全密钥速率的限制。在这里,我们以Gigahertz时钟速率引入了一种简单而紧凑的MDI-QKD系统设计,具有增强对激光弹力的弹性,因此可以在没有规格或相位反馈的情况下使用自由运行的半导体激光源。这是使用直接激光调制来实现的,仔细利用增益开关和注入锁定激光动力学来编码相位调节的时键位。我们的设计实现了可靠的关键速率,从而通过数量级来改善最高水平的状态,在54 dB频道损失时最多8 bps,在有限尺寸的机制下以30 dB的频道损失,在54 dB频道损失和2 kbps中提高了2 kbps。这种非常简单的MDI-QKD系统设计和原则证明证明了MDI-QKD是用于未来量子通信网络的实用,高性能的解决方案。