单电子控制的基本概念:添加单个电子之前和之后的导电岛(a)。添加单个未补偿的电子电荷会产生电场 E,这可能会阻止添加以下电子。基于单电子转移的设备:a) 单电子盒:这是一种基于单电子转移的电子设备。图 (a) 显示了概念上最简单的设备,即“单电子盒”。该设备仅由一个小岛组成,小岛与较大的电极(“电子源”)之间通过隧道屏障隔开。可以使用另一个电极(“栅极”)将外部电场施加到岛上,该电极与岛之间通过较厚的绝缘体隔开,这不允许明显的隧穿。该场改变了岛的电化学电位,从而决定了电子隧穿的条件。图 (b) 显示了特定的几何结构,其中“外部电荷” Q e = C 0 U 可以很容易地可视化,(c) 显示了“库仑阶梯”,即平均电荷 Q = -ne 对栅极电压的阶梯式依赖性,适用于几个温度值。栅极电压 U 的增加会吸引越来越多的电子进入岛。电子通过低透明度屏障的传输的离散性必然使这种增加呈阶梯状。
载流子倍增因子的特性是设计坚固可靠的功率半导体器件以及评估其对地面宇宙辐射引起故障的敏感性的关键问题。本文提出了一种低温恒温装置,以将使用来自 Am 241 放射源的软伽马辐射的非侵入式电荷谱技术应用于广泛的 Si 和 SiC 器件。本文提供了一种关系,将液氮温度下测得的倍增因子转换为环境温度下测得的倍增因子。本文提出了一种专用的模拟方案,将 TCAD 和 Monte Carlo 工具结合起来,以预测收集到的电荷的光谱并定位倍增因子的热点。最后,在强调了电荷倍增因子与地面宇宙辐射下的功率器件故障率之间的相关性之后,建议将本技术作为评估安全操作区的补充方法。
您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
微纳器件与技术研究是信息科学与生命科学交叉领域的重要前沿,在神经科学和医学应用领域具有重要的战略意义和良好的应用前景(Liu et al.,2020)。随着微纳加工技术的快速进步,创新的智能化、微型化、集成化器件不断涌现,在检测和调控方面具有独特的优势。值得注意的是,将微纳器件与神经科学和临床医学相结合,可以解决科学前沿问题并培育新的研究热点。癫痫是一种主要的神经系统疾病,影响着全球超过六千万人,严重影响他们的健康和生活质量(Bernhardt et al.,2019)。研究相关神经回路内神经活动的变化对阐明癫痫的发病机制和治疗方法至关重要。可植入微电极阵列能够高质量地记录信号和解码神经信息,在脑机接口方面具有巨大的应用潜力(Wang 等人,2024 年)。Han 等人设计并制造了一种可植入微电极阵列,专门用于癫痫大鼠基底神经节纹状体区域的电生理信号检测和分析。对癫痫发作期间纹状体的电生理数据的分析为了解颞叶癫痫发作初期和潜伏期期间纹状体神经活动的动态过程提供了宝贵的见解。这一理解有助于揭示癫痫的神经机制,同时促进相关治疗方法的进步。疼痛是一种情绪和不愉快的感官体验,会对生活和工作的各个方面产生重大的生理和心理影响。纳米技术的最新进展为利用各种纳米材料和靶向表面的创新止痛策略铺平了道路
此软件包提供了相关的摘要,该信息通常由分析师和安全团队手工制作的信息进行狩猎和事件响应。Corelight将实体定义为企业网络元素,例如系统,服务器,用户,域或证书。这些属性可在一组相互关联的日志中获得,这些日志从完整的Corelight日志流进行了汇总以进行快速搜索。此日志集包括有关网络上所有内容的实体信息,从IT设备(笔记本电脑,服务器,电话,打印机)到工业控制系统(ICS)和操作技术(OT)设备(构建自动化,相机和工业控制系统)。
血糖监测构成了1型糖尿病(T1D)临床管理中的关键元素,这是一种全球升级的代谢障碍。连续的葡萄糖监测(CGM)设备在优化血糖控制,缓解不良健康结果并增强了T1D侵害的个体的整体生活质量方面表现出了有效性。该领域的最新进展涵盖了电化学传感器的重新发现,从而增强了血糖监测的有效性。这一进步使患者能够对自己的健康进行更大的控制,从而减轻与病情相关的负担,并为医疗保健系统的整体减轻做出贡献。引入新型医疗设备,无论是源自现有原型还是作为创新创造的来源,都必须遵守食品药品监督管理局(FDA)规定的严格批准过程。通过其相关风险进行分层的各种设备分类,决定了不同的批准途径,每种途径以不同的时间表为特征。这篇评论强调了主要基于电化学传感器的血糖监测设备的最新进展,并阐明了他们在FDA批准方面的监管旅程。创新的非侵入性血糖监测设备的出现具有保持严格的血糖控制的希望,从而防止了与T1D相关的合并症,并延长了受影响个体的预期寿命。
众所周知,地面宇宙辐射 (TCR) 会导致硅和碳化硅功率器件中发生电离事件,从而导致灾难性的后果 [1]。因此,功率器件的设计和可靠运行需要准确表征电荷沉积和收集过程。目前,量化功率器件对 TCR 的敏感性最常见、最快速的技术是基于粒子加速器中的高能粒子辐照 [2]。由于这些测试是在高加速条件下进行的,因此转换到真实的 TCR 环境并不总是很简单。在本文中,我们提出了一种实验装置,用于监测半导体功率器件中由电离辐射产生的非破坏性单电离事件的发生,以收集有关电荷产生和收集过程的精确统计数据。谱测量系统的设计方式使其可以部署在大量实验配置中,其中收集的电荷、计数率和 DUT 的额定电压可能会有很大变化。具体来说,光谱仪需要记录器件中产生的每个电离事件,这些事件的电荷脉冲范围从 1 fC 到 2 pC,以及其时间戳和波形。该系统需要处理高压器件(额定电压高达 3.5 kV),尽量减少偏置纹波和电压随时间漂移。为了提高收集数据的统计意义,需要并行测试器件。因此,系统必须对大输入电容(高达 2 nF)保持稳定,并为大输入电容提供准确的结果
独立于设备的量子密钥分发 (DIQKD) 提供了最强大的安全密钥交换形式,仅使用设备的输入输出统计数据即可实现信息论安全性。尽管 DIQKD 的基本安全原理现已得到充分理解,但为高级 DIQKD 协议推导出可靠且强大的安全界限仍然是一项技术挑战,这些界限要超越基于违反 CHSH 不等式而得出的先前结果。在这项工作中,我们提出了一个基于半有限规划的框架,该框架为使用不受信任设备的任何 QKD 协议的渐近密钥速率提供可靠的下限。具体而言,我们的方法原则上可用于基于完整输入输出概率分布或任何贝尔不等式选择来为任何 DIQKD 协议找到可实现的密钥速率。我们的方法还扩展到其他 DI 加密任务。
液体晶体(LC)是一种出色的电磁材料,在液体和晶体固体之间具有中间结构。它具有较大的光学各向异性,其光学特性可以通过中等外部磁场轻松修饰,从而使光的放大和相位调制。LC显示基于光的幅度或两极分化的模拟,已成为巨大的商业成功。同时,在光子学领域探索了许多LC设备的新型非显示器应用[1-6]。lc光学元素在操纵不同程度的光中发现了新的作用,尤其是在矢量梁的工程中,具有简单配置,方便使用,低成本和高转换效率的优势。向量场[7 - 9],其中横梁横平的光极化是空间变化的,引起了很多关注。矢量梁作为对矢量螺旋方程的自然解决方案。它们经常被生成具有正交极化状态的正交标量场的超级位置,为
摘要 医疗器械代表了一类广泛的产品,旨在用于预防、诊断、监测、治疗或缓解疾病或损伤。近年来,医疗器械的发展已导致越来越多的产品含有“物质”,由于其存在形式和使用部位与药品相似,通常被称为“边缘”产品。欧盟 (EU) 的监管文件在许多监管领域都考虑了基于物质的产品;在治疗学中,他们根据产品的主要作用机制将“医疗器械”与“药品”区分开来。这种区别通常不是直观的,而是基于对“药理、免疫和代谢作用机制”等基本术语的正确解释,这些术语具有重要的监管意义。本文讨论了正确解释这些术语的问题,并希望引起药理学家的兴趣,设计适当的实验范例,以严格、科学地解释由物质制成的医疗器械的正确作用机制。
