重复/与/伴侣/与/相关:重复/与《一般拨款法》第三部分的拨款有关:叙事法案摘要:该法案在州政府基金中创造创新实施气候变化政策的障碍。该法案最初拨款1000万美元,劳动力解决方案获得了100万美元用于26财年和27财年。该法案还需要向DFA报告进度和预算,以及与《政府责任法》有关的某些披露。财政含义DWS将在第26财年和27财年获得100万美元以根据该法案使用。去年的重大问题绩效影响,州长Michelle Lujan Grisham发布了2024 - 152年的行政命令,要求州机构合作开发适合气候就绪的基础设施的劳动力,并设定了在2026年底之前培训2,000名在气候准备职业的目标。dws及其合作伙伴将气候弹性确定为2024 - 2027年劳动力创新和机会法案国家计划中的优先部门。能源过渡和公共安全也是优先部门(包括消防和紧急响应)。但是,联邦参与部门规划的任务没有资金,并且从历史上看,劳动力系统一直在努力使真实部门的战略成为现实。该法案解决了为部门策略提供资金并提高解决国家高优先行业的能力的长期需求。此外,DWS经常收到与政府机构,教育机构和基于社区的组织有关的请求,这些组织正在寻求赠款以解决气候变化。许多这样的赠款包括劳动力组成部分,但这些组织没有劳动力背景。这会导致DWS提供无资金和人手不足的支持,或者拨款者重新发明轮子并重复现有的劳动力服务。通过这项法案的资金将使DWS能够通过确保良好的合适并最大程度地利用现有劳动力资源来适当地为寻求将联邦和私人资金带到我们州的所有合作伙伴提供服务。最后,DWS非常熟悉实施气候变化政策的劳动力障碍,尤其是在面临最大气候挑战的农村社区中。该法案将资助我们为支持该州农村地区的劳动力培训和机会扩大的努力。行政影响DWS将能够创建一个强大的基础,并计划在整个能源过渡过程中为新墨西哥州服务,并在未来许多年内解决气候变化问题。冲突,重复,陪伴,关系无。
图 1:光聚合物分层系统 (Wikipedia.org)。...................................................................... 2 图 2:使用相交激光束的光雕塑过程 (Swainson, 1977)。........................................ 3 图 3:塔式喷嘴固体自由成型技术 (drajput.com)....................................................... 4 图 4:简单的分层铸造模具 (DiMatteo, 1976)。...................................................................... 4 图 5:粉末选择性激光烧结工艺 (Wikipedia.org)。...................................................... 5 图 6:FDM 工艺图 (Reprap.org)。............................................................................. 7 图 7:DFA 分析软件用户界面 (Boothroyd et al, 2011)。...................................................... 11 图 8:MakerBot 的 MakerWare 用户界面。(Makerbot.com)............................................. 14 ........... 20 图 10:GE Aviation 通过增材制造的燃油喷嘴(Rockstroh 等,2013 年)。 ........................ 21 图 11:通过 DMLS(EADS)优化和制造的两个航空航天支架。 ........................ 23 图 12:“Over-the-wall”设计方法图解(Munro & Associates,1989 年)。 ...... 24 图 13:成本与影响图“谁投射的阴影最大?”(Munro & Associates,1989 年)。 ......................................................................................................................................... 24 图 14:显示不同材料和制造方法之间兼容性的图表(Boothroyd & Dewhurst,2011 年)......................................................................................................... 26 图 15:alpha 和 beta 旋转对称值(Boothroyd 等,2011 年)。 ................................... 28 图 16:影响零件处理的几何特征(左)和其他特征(右) (Boothroyd et al, 2011). ........................................................................................................................................... 28 图 17:提高装配简易性的示例 (Boothroyd et al, 2011). ............................................................................................................. 28 图 18:影响插入时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999). ............................................................................................................. 30 图 19:影响手动处理时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999). ............................................................................................................. 31 图 20:原始控制器组装 (Boothroyd et al, 2011). ............................................................................................. 32 图 21:分析前(左)和分析后(右)的控制器组装 (Boothroyd et al, 2011). ................................................................................................................................................................. 34 图 22:当前门铰链的组件。 ...................................................................................................... 35 图 23:两个已安装铰链的 CATIA 模型和负载分析方向(湾流宇航)。 ...................................................................................................................... 36 图 24:弹簧球和铰链止动器的特写。 ...................................................................................... 37 图 25:重新设计的增材制造门铰链。 ...................................................................................... 39 图 26:合并前后鹅颈的视觉比较。 ............................................................................. 41 图 27:重新设计前后球柱塞壳体的视觉比较。 ............................................................................. 41 图 28:原始铰链组件上用于插入计算的投影槽。 ............................................................................. 43 图 29:重新设计的铰链组件上用于插入计算的投影槽。 ............................................................................. 43
图 1:光聚合物分层系统 (Wikipedia.org)。...................................................................... 2 图 2:使用相交激光束的光雕塑过程 (Swainson, 1977)。........................................ 3 图 3:塔式喷嘴固体自由成型技术 (drajput.com)....................................................... 4 图 4:简单的分层铸造模具 (DiMatteo, 1976)。...................................................................... 4 图 5:粉末选择性激光烧结工艺 (Wikipedia.org)。...................................................... 5 图 6:FDM 工艺图 (Reprap.org)。............................................................................. 7 图 7:DFA 分析软件用户界面 (Boothroyd et al, 2011)。...................................................... 11 图 8:MakerBot 的 MakerWare 用户界面。(Makerbot.com)............................................. 14 ........... 20 图 10:GE Aviation 通过增材制造的燃油喷嘴(Rockstroh 等,2013 年)。 ........................ 21 图 11:通过 DMLS(EADS)优化和制造的两个航空航天支架。 ........................ 23 图 12:“Over-the-wall”设计方法图解(Munro & Associates,1989 年)。 ...... 24 图 13:成本与影响图“谁投射的阴影最大?”(Munro & Associates,1989 年)。 ......................................................................................................................................... 24 图 14:显示不同材料和制造方法之间兼容性的图表(Boothroyd & Dewhurst,2011 年)......................................................................................................... 26 图 15:alpha 和 beta 旋转对称值(Boothroyd 等,2011 年)。 ................................... 28 图 16:影响零件处理的几何特征(左)和其他特征(右) (Boothroyd et al, 2011). ........................................................................................................................................... 28 图 17:提高装配简易性的示例 (Boothroyd et al, 2011). ............................................................................................................. 28 图 18:影响插入时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999). ............................................................................................................. 30 图 19:影响手动处理时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999). ............................................................................................................. 31 图 20:原始控制器组装 (Boothroyd et al, 2011). ............................................................................................. 32 图 21:分析前(左)和分析后(右)的控制器组装 (Boothroyd et al, 2011). ................................................................................................................................................................. 34 图 22:当前门铰链的组件。 ...................................................................................................... 35 图 23:两个已安装铰链的 CATIA 模型和负载分析方向(湾流宇航)。 ...................................................................................................................... 36 图 24:弹簧球和铰链止动器的特写。 ...................................................................................... 37 图 25:重新设计的增材制造门铰链。 ...................................................................................... 39 图 26:合并前后鹅颈的视觉比较。 ............................................................................. 41 图 27:重新设计前后球柱塞壳体的视觉比较。 ............................................................................. 41 图 28:原始铰链组件上用于插入计算的投影槽。 ............................................................................. 43 图 29:重新设计的铰链组件上用于插入计算的投影槽。 ............................................................................. 43
图 1:光聚合物分层系统 (Wikipedia.org)。.............................................................. 2 图 2:使用相交激光束的光雕塑过程 (Swainson, 1977)。......... 3 图 3:塔式喷嘴固体自由成型技术 (drajput.com).................................... 4 图 4:简单的分层铸造模具 (DiMatteo, 1976)。.............................................................. 4 图 5:粉末选择性激光烧结工艺 (Wikipedia.org)。................................................ 5 图 6:FDM 工艺图 (Reprap.org)。.................................................................... 7 图 7:DFA 分析软件用户界面 (Boothroyd et al, 2011)。.................................... 11 图 8:MakerBot 的 MakerWare 用户界面。(Makerbot.com) .................................... 14 图 9:简化的挤压系统,说明轴位置 (Wikipedia.org)。........... 20 图 10:GE Aviation 的增材制造燃油喷嘴 (Rockstroh 等人,2013)。......... 21 图 11:通过 DMLS (EADS) 优化和制造的两个航空航天支架。....... 23 图 12:"Over-the-wall" 设计方法的说明 (Munro & Associates,1989)。...... 24 图 13:成本与影响图“谁投下的阴影最大?” (Munro & Associates,1989)。...................................................................................................................................... 24 图 14:显示不同材料和制造方法之间兼容性的图表(Boothroyd & Dewhurst,2011)............................................................................................. 26 图 15:alpha 和 beta 旋转对称值(Boothroyd et al,2011)。................... 28 图 16:影响零件处理的几何(左)和其他(右)特征(Boothroyd et al,2011)。...................................................................................................................................... 28 图 17:提高组装简易性的示例(Boothroyd et al,2011)。................................ 28 图 18:影响插入时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999)。...................................................................................................................... 30 图 19:影响手动处理时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999)。................................................................................................ 31 图 20:原始控制器组件(Boothroyd 等人,2011 年)。...................................................... 32 图 21:分析前(左)和分析后(右)的控制器组件(Boothroyd 等人,2011 年)。........................................................................................................................................... 34 图 22:当前门铰链的组件。........................................................................................................... 35 图 23:两个已安装铰链的 CATIA 模型和负载分析方向(湾流宇航)。.................................................................................................................................... 36 图 24:弹簧球和铰链止动器的特写............................................................................. 37 图 25:重新设计的用于增材制造的门铰链。.................................................... 39 图 26:鹅颈加固前后的视觉对比。........... 41 图 27:重新设计前后球柱塞壳体的视觉对比。........... 41 图 28:原始铰链组件上用于插入计算的投影槽。......... 43 图 29:重新设计的铰链组件上用于插入计算的投影槽。.... 43
指定交互式多代理任务是一项长期的软件工程挑战[6]。规格应足够高,以保持可访问性和明确的可及以确保所得软件组件的可靠性。本文通过介绍基于DSL的工具链的基础特征来解决此问题(见图1)称为LIRAS 1,用于指定多代理交互模式。里拉(Liras)被开发为域 - 不可思议的,并且相对于所涉及的代理的数量和性质(例如,基于软件或人类)以及构成模式的动作数量和类型。代理因其提供的原始技能集而有所不同(例如,为机器人移动或为四轮驱动器打开发动机)。在里拉斯(Liras)中,这些技能被安排为模式。根据图1,定义技能集需要专家实践者的干预,而模式规范则设计为非专家用户可以访问。在里拉斯(Liras)中,代理之间的同步动力学的语义基于确定性有限状态自动机(DFA),构成了可符合模型对模型转换和正式验证的规格的这一方面。具体而言,可以通过Uppaal工具[11]验证了涉及同步定义明确的属性。该工具链的此阶段仅针对有关模式的逻辑和结构声音的属性(例如,具有冲突目标的技能),因此不涉及相应的网络物理系统的物理组成部分。环境)。几个里拉斯规格构成模式库。在以下内容中,我们将任期任务作为一系列模式。可以使用所谓的和经过验证的模式库,用于更广泛的任务规范和正式的分析工具链外部和与里拉斯(例如[12]中介绍的)脱钩。latter设想文本DSL(与里拉斯分开),以指定涉及人和机器人代理的错误,特别关注人类机器人相互作用。此类DSL当前从预先确定和固定的集合中利用人类机器人的交互模式,从而限制了该框架对现实生活的适用性。可以通过进口里拉斯模式来指定任务来克服这种缺点。我们指出,假定操作环境的规范(例如,布局和关注点)是独立于LIRAS完成的(即,LIRAS模式是参数W.R.T.在更广泛的框架内,最终的任务指定会自动转换为基于随机混合自动机的形式模型[5]。如果要进口自定义的里拉斯交互模式,正式模型的自动生成将意味着起草新定义的模式的每个自定义技能的正式模型,这需要专家用户的输入。任务的正式模型是统计模型检查[5]以计算质量指标
图 1:光聚合物分层系统 (Wikipedia.org)。...................................................................... 2 图 2:使用相交激光束的光雕塑过程 (Swainson, 1977)。........................................ 3 图 3:塔式喷嘴固体自由成型技术 (drajput.com)....................................................... 4 图 4:简单的分层铸造模具 (DiMatteo, 1976)。...................................................................... 4 图 5:粉末选择性激光烧结工艺 (Wikipedia.org)。...................................................... 5 图 6:FDM 工艺图 (Reprap.org)。............................................................................. 7 图 7:DFA 分析软件用户界面 (Boothroyd et al, 2011)。...................................................... 11 图 8:MakerBot 的 MakerWare 用户界面。(Makerbot.com)............................................. 14 ........... 20 图 10:GE Aviation 通过增材制造的燃油喷嘴(Rockstroh 等,2013 年)。 ........................ 21 图 11:通过 DMLS(EADS)优化和制造的两个航空航天支架。 ........................ 23 图 12:“Over-the-wall”设计方法图解(Munro & Associates,1989 年)。 ...... 24 图 13:成本与影响图“谁投射的阴影最大?”(Munro & Associates,1989 年)。 ......................................................................................................................................... 24 图 14:显示不同材料和制造方法之间兼容性的图表(Boothroyd & Dewhurst,2011 年)......................................................................................................... 26 图 15:alpha 和 beta 旋转对称值(Boothroyd 等,2011 年)。 ................................... 28 图 16:影响零件处理的几何特征(左)和其他特征(右) (Boothroyd et al, 2011). ........................................................................................................................................... 28 图 17:提高装配简易性的示例 (Boothroyd et al, 2011). ............................................................................................................. 28 图 18:影响插入时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999). ............................................................................................................. 30 图 19:影响手动处理时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999). ............................................................................................................. 31 图 20:原始控制器组装 (Boothroyd et al, 2011). ............................................................................................. 32 图 21:分析前(左)和分析后(右)的控制器组装 (Boothroyd et al, 2011). ................................................................................................................................................................. 34 图 22:当前门铰链的组件。 ...................................................................................................... 35 图 23:两个已安装铰链的 CATIA 模型和负载分析方向(湾流宇航)。 ...................................................................................................................... 36 图 24:弹簧球和铰链止动器的特写。 ...................................................................................... 37 图 25:重新设计的增材制造门铰链。 ...................................................................................... 39 图 26:合并前后鹅颈的视觉比较。 ............................................................................. 41 图 27:重新设计前后球柱塞壳体的视觉比较。 ............................................................................. 41 图 28:原始铰链组件上用于插入计算的投影槽。 ............................................................................. 43 图 29:重新设计的铰链组件上用于插入计算的投影槽。 ............................................................................. 43
自航空业诞生以来,驾驶舱操作经历了重大变化。由于航空电子设备和通信技术的改进,客机的发展导致机组人员数量逐渐减少。随着飞行工程师、领航员和无线电操作员被新的玻璃驾驶舱功能所取代,机上人员从 5 人减少到 3 人,然后又减少到 2 人。到目前为止,尽管系统可靠性不断提高,但这一数字尚未减少。事实上,商业航空业最近才开始对单飞行员操作 (SPO) 产生兴趣。目标是评估可以将副驾驶员职责重新分配给可靠和自动化子系统和/或地面支持操作员的强大解决方案。对 SPO 的这种吸引力主要源于现代航空业预计将面临的挑战,包括预计的合格飞行员短缺 51 和不断增加的 27 空中交通(图 1)。考虑到这一点,一些公司正在为向 SPO 过渡做准备,SPO 有可能在长期内节省大量成本 4。事实上,到目前为止,许多专家都同意将这一变化视为一种经济效益。例如,瑞士联合银行 (UBS) 进行的一项研究表明,通过在商用航空中引入 SPO,全球航空公司将在长期内节省 150 亿美元 38 的运营成本。然而,尽管有这些潜在的好处,但关于安全性和人为因素的争论仍在继续,SPO 的技术、操作和商业可行性尚未得到证实。相反,所谓的扩展最低机组运营 (eMCO) 概念正在经历一个不那么麻烦的开发过程,它基于对现有设计的改进,其中 SPO 将仅限于飞行的巡航阶段(例如长途、跨大陆航班)。由于缺乏冗余副驾驶员交叉核对功能,单飞行员操作面临的主要挑战之一将是评估和预测单飞行员的任何高工作负荷情况,以便保持其对任务计划的心理状态并正确处理突然失能事件。此外,由于自动化将接管副驾驶员的一些任务,因此有必要设计一个合适的人机界面 (HMI),以适应操作员的心理状态。其他挑战通常与操作、通信程序和流程以及飞行员/机组人员的培训要求和系统完整性有关。向单飞行员操作的过渡还将需要彻底修改认证范式,考虑到从审议/反应系统向可根据操作条件扩展的混合自主系统的转变。目前,人们正在付出大量努力来评估某些新型飞行辅助系统的运行潜力,这些系统可以作为满足 SPO 提出的新要求的一种手段。学术界和工业界目前正在研究所谓的数字飞行助手 (DFA) 操作概念,以降低驾驶舱的复杂性并在紧张的决策过程中为飞行员提供支持,包括可能导致失能的决策过程。该系统通常旨在执行任务或基于传感器的飞行员认知状态实时评估,以提供特定警报,防止混乱或失去意识。