立体图像超分辨率(Sterereosr)近年来引起了人们的关注,这是由于手机,自动驾驶汽车和机器人的双重摄像头广泛范围。在这项工作中,我们根据Swinir的扩展(最初是为单个图像还原设计的,又提出了一种名为SWINFSR的新定单方法,以及Fast Fourier卷积(FFC)获得的频域知识。具体来说,为了有效地收集全球信息,我们通过使用FFC明确地不明显地局限于SWINIR中的残留SWIN变压器块(RSTBS),并使用结果域知识,并采用结果的残留Swin傅立叶型跨前块(RSFTB)进行特征提取。此外,为了有效,准确的立体视图融合,我们提供了一个新的跨意见模块,称为RCAM,该模块的竞争性能高于竞争性能,同时比最先进的交叉意见模块更少的计算成本。广泛的实验结果和消融研究证明了我们提出的SWINFSR的有效性和效率。
我们提出了一种基于辩论动态的知识图谱自动推理新方法。其主要思想是将三重分类任务构建为两个强化学习代理之间的辩论游戏,它们提取论据(知识图谱中的路径),目标是分别促使事实为真(论点)或事实为假(反论点)。基于这些论据,一个称为评判者的二元分类器决定事实是真是假。这两个代理可被视为稀疏的对抗性特征生成器,为论点或反论点提供可解释的证据。与其他黑箱方法相比,这些论据让用户能够了解评判者的决定。由于这项工作的重点是创建一种可解释的方法以保持具有竞争力的预测准确率,因此我们在三重分类和链接预测任务上对我们的方法进行了基准测试。因此,我们发现我们的方法在基准数据集 FB15k-237、WN18RR 和 Hetionet 上的表现优于几个基线。我们还进行了一项调查,发现提取的参数对用户很有帮助。
近年来,已经提出了连续的潜在空间(CLS)和DISCRETE潜在空间(DLS)深度学习模型,以改善医学图像分析。但是,这些模型遇到了不同的挑战。cls模型捕获了复杂的细节,但由于其强调低级特征,因此在结构表示和易男性方面通常缺乏解释性。尤其是,DLS模型提供了可解释性,鲁棒性以及由于其结构性潜在空间而捕获粗粒度信息的能力。但是,DLS模型在捕获细粒细节方面的功效有限。为了确定DLS和CLS模型的局限性,我们采用了Synergynet,这是一种新型的瓶颈体系结构,旨在增强现有的编码器 - 核编码器分割框架。Synergynet无缝地将离散和连续的表示形式整合到利用互补信息中,并成功保留了细学的表示的细节。我们对多器官分割和CAR-DIAC数据集进行的实验实验表明,SynergyNet的表现优于包括Transunet:Transunet:DICE评分提高2.16%的其他最新方法,而Hausdorff分别分别提高了11.13%。在评估皮肤病变和脑肿瘤分割数据集时,我们观察到皮肤病变分割的交互分数的1.71%的重新提高,脑肿瘤分割的增长率为8.58%。我们的创新方法为增强医学图像分析关键领域中深度学习模型的整体性能和能力铺平了道路。
- 鉴于萨顿和其他地区的可用房产大幅下降,需要投入更多资源来确保新的私人租赁行业房产。 - 关注潮湿和霉菌问题,以确保私人租赁行业房产的所有临时租户都能够联系到他们的房东,并确保 Encompass 租赁团队及时调查任何当前或持续存在的问题。 - 由于社会住房等待时间增加以及安置在行政区外,投诉数量有所增加。 - 持续致力于为欢迎来到萨顿的乌克兰和阿富汗家庭寻找房产并提供支持。 - 与理事会合作,确定未来 4 年的合同储蓄概况。 - 构建一个新的复杂财务仪表板,以根据合同和补助收入跟踪各个交付团队的支出。
立足当下、着眼未来是液化空气集团战略的核心。液化空气集团制定了 2025 年战略计划 ADVANCE,旨在实现财务和非财务层面的全球业绩。集团立足新市场,拥有多项重要资产,例如兼具韧性和实力的商业模式、创新能力和技术专长。集团开发有助于气候和能源转型的解决方案(尤其是氢能),并采取行动在医疗保健、数字和高科技领域取得进展。
Edge AI是一种创新的计算范式,旨在将机器学习模型的培训和推理转移到网络边缘。此范式提供了一个机会,可以通过自动驾驶和无处不在的个性化医疗保健等新服务来重大影响我们的日常生活。尽管如此,将情报提升到优势涉及几个主要挑战,其中包括需要约束模型架构设计,训练有素的模型的安全分配和执行以及分发用于培训的模型和数据所需的大量网络负载。在本文中,我们重点介绍了过去AI发展的关键方面,并将其与当前的挑战联系起来。本文旨在确定Edge AI的研究机会,旨在将人工智能和边缘计算领域的研究汇集在一起。