我们回顾了具有等速储层的晚期绝热压缩空气存储厂的分析模型的文献,重点是可以从模型中提取的见解。审查表明,文献中缺少拥有绝热储层,绝热涡轮机械以及没有油门的植物的模型。假设植物在准稳态状态下运行,我们继续得出这种模型,可以将空气视为热量和热完美的气体,并且热能存储单元不含热和压力损失。模型导致关键性能指标的封闭式表达式,例如植物效率和体积能量密度,就组成效率和压力比而言。这些表达式的推导基于涉及温度和压力的同时时间变化的近似积分。近似值导致相对误差小于1%。模型表明压缩和扩展工作,植物效率和最高工艺温度显示最小。该模型还表明,对于给定的非二维存储容量和最大储层压力,最小化最大过程温度的植物的最大效率大约等于最大化效率的植物的最低效率。对于具有绝热洞穴和绝热热能储存单元的两阶段工厂,我们的分析模型预测体积能量密度在4.76%以内,表明它足够准确,可以用于初始植物设计。
我们提出了一种使用多体分离式化催化的方法来加快量子绝热算法的方法。这将应用于随机场抗铁磁液体自旋模型。该算法的催化方式使得进化在过程中间近似于海森堡模型,并且该模型处于离域相。我们以数字方式显示,我们可以加快标准算法来使用此想法来查找随机模型的基础状态。我们还证明了加速是由于差距扩增而引起的,即使基础模型并非没有挫败感。分频器到加速度大致出现在相互作用的值中,这被称为离域转变的关键。我们还将参与率和纠缠熵计算为时间的函数:他们的时间依赖关系表明该系统正在探索更多的状态,并且比没有催化剂时更纠缠。一起,所有这些证据都表明加速与离域有关。即使只能研究相对较小的系统,但证据表明,该方法的缩放尺寸是有利的。通过一台小型在线IBM量子计算机的实验结果来说明我们的方法,显示了如何随着这些机器的改善来验证该方法。与标准算法相比,催化方法的成本只是一个恒定因素。
b imem-CNR研究所,帕科地区Delle Scienze 37/A 43124 Parma,Italia。*francesco.cugini@unipr.it摘要磁化材料的绝热温度变化的直接测量对于设计有效且环保的磁性冷却设备至关重要。这项工作报告了测量原理和主要实验问题的概述,这些问题必须考虑获得可靠的材料表征。根据有限差异热模拟和特殊设计的实验,讨论了非理想绝热条件,温度传感器的作用以及材料特定特性的作用。详细考虑了两种情况:薄样品的表征以及对快速场变化的热量响应的测量。最后,在具有一阶过渡的材料的情况下,讨论了不同测量方案的影响。1。引言制冷在我们的现代社会中起着基本作用:它渗透了我们的生活,并有助于人类的进化和健康。但是,它的成本超过了全球能源消耗的18%,并且这一数字不断增加二人组,以扩散发展中国家的制冷技术。1对实际气体压缩系统的这种巨大的能源需求和对环境的高度影响,紧急促进了新的环保解决方案。在新兴技术中,有磁制冷,它有望产生低生态影响,没有危险的液体,高效率和减少的电能消耗。2磁制冷是基于磁性效应(MCE),该效应由绝热温度变化(ΔTAD)或通过施加磁场的变化在磁性材料中诱导的等温熵变化(ΔST)组成。3通过磁场的周期性变化获得制冷剂循环。2四个元素对于建立磁冷却系统至关重要:磁化(MC)材料,磁场的来源,一种将材料相对移动到田间移动的机制以及用于传热的流体。通过应用或去除磁场引起的温度变化是导致传热的驱动力。这取决于材料的特性和施加磁场的强度。当前,最有前途的MC材料显示,在1 T的磁场变化中,可逆的ΔTAD为约3 K,这是可以用永久磁体组装而实现的。4–6尽管在过去的二十年中建造了许多磁性冰箱的原型,但竞争性MC设备的开发仍然需要更多执行的MC材料和新的智能技术解决方案。2,4,7除了对材料的磁性特性的基本研究外,寻找有效的冷却元素还需要测量其MC
c specific heat, J.kg -1 .K -1 in input E energy, Wh j time step H enthalpy, J out output h specific enthalpy, J.kg -1 PV photovoltaic K global thermal coefficient, W.m -2 .K -1 ṁ mass flow rate, kg.s -1 p constant pressure m mass, kg RE renewable energy Q heat transfer, J res reservoir q heat transfer rate, J.s -1 ret return t time, s ST storage T temperature, K t turbine u specific internal energy, J.kg -1 v constant volume w specific work, J.kg -1 w wind Subscripts Superscript amb ambient w water c compressor co cold Greek letters EBD electrical building demand Δ and delta GR grid γ heat capacity ratio HE heat exchanger boolean coefficient ho hot compression/ expansion ratio i stage number exergy efficiency Abbreviation
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
我们在现象学上制定并在实验上观察到通过人工倾斜多层(ATML)中的热电流重新定位增强了绝热的热电转换。通过交替堆叠具有不同导电性的两种材料,并相对于纵向温度梯度旋转其多层结构,诱导导热性张量中的非分子分量。这种非对角线热传导(ODTC)在绝热条件下产生有限的横向温度梯度,并在绝热条件下产生了seebeck效应诱导的热电器,该温度是由异热横向热电器上置于由外diagonal驱动的热量热电器上的。在这项研究中,我们计算和观察包括热电CO 2 MNGA Heusler合金和BI 2-A SB A TE 3化合物的ATML中的二维温度分布以及所得的横向热电器。通过将倾斜角从0°更改为90°,横向温度梯度显然出现在中间角度,横向热电图在CO 2 MNGA/BI 0.2 MNGA/BI 0.2 SB 1.8 TE 3 te 3 te 3 te的ATML中以45°的倾斜度为45°的ATML,均来自45°的贡献。这种从ODTC得出的混合动作导致横向热电转化率最大降低效率的显着差异从等热极限的3.1%到绝热极限的8.1%。
然后我们使用量子绝热算法尝试准备 H 1 的基态 | ϕ 1 ⟩。这样的状态必须是 h 的最小化器的线性组合,因此测量状态必须返回 h 的最小化器。剩下的就是指定初始汉密尔顿量 H 0 。一种简单的方法是再次选择对角汉密尔顿量,例如 H 0 = I −| 0 n ⟩⟨ 0 n | 或 H 0 = − P j Z j ,其中 Z j 是将 Pauli Z 门应用于第 j 个量子位同时保持其他量子位不变的简写。两个汉密尔顿量都有一个唯一的(并且准备起来很简单)基态 | 0 n ⟩ 。
洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占的、免版税的许可,可以为了美国政府的目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
量子绝热定理是时间相关量子系统的基础,但能够定量表征多体系统中的绝热演化却是一项挑战。这项工作表明,使用适当的状态和粒子密度度量是一种可行的方法,可以定量确定量子多体系统动态中的绝热程度。该方法还适用于有限温度下的系统,这对于量子技术和量子热力学相关协议非常重要。通过与将量子绝热标准扩展到有限温度所获得的结果进行比较,讨论了考虑记忆效应的重要性:结果表明,这可能会产生构造上为准马尔可夫的错误读数。由于所提出的方法可以通过仅跟踪系统局部粒子密度来表征绝热演化的程度,因此它可能适用于非常大的多体系统的理论计算和实验。
高谐波产生(HHG)已引起了对材料特性和超快动态的探索的极大关注。然而,缺乏对HHG和其他准颗粒(例如声子)之间耦合的考虑,一直阻碍对HHG中多体相互作用的理解。在这里,我们通过研究非绝热(NA)相干偶联的HHG来揭示了Quasiparticle耦合的强场动力学中多体电子载体机制。相干的声子被揭示出通过声子变形效应引起的绝热带调制以及多个山谷中光载体的Na和非平衡分布有效地影响HHG。绝热和NA机制通过影响声子周期和HHG强度振荡的相位延迟而离开指纹,这两者在实验上都是可测量的。对这些数量的研究可以直接探测材料中电子相互作用。