如今,EHealth Service已成为一个蓬勃发展的领域,该领域是指基于计算机的医疗保健和信息提供,以在本地,区域和全球改善卫生服务。 通过分析电子健康数据不仅可以照顾患者,而且还通过相应的数据驱动的eHealth Systems提供服务,有效的疾病风险预测模型。 在本文中,我们特别关注预测和分析糖尿病,这是一种日益普遍的慢性疾病,是指在长时间内以高血糖水平为特征的一组代谢性疾病。 k-nearest邻居(KNN)是利用相关健康数据建立这种疾病风险预测模型的最流行和最简单的机器学习技术之一。 为了实现我们的目标,我们提出了基于患者在各个维度中的习惯属性的基于基于学习的预测模型的最佳K-最近的邻居(OPT-KNN)。 此方法确定了误差率较低的最佳邻居数,以在结果模型中提供更好的预测结果。 该机器学习eHealth模型的效果通过对医疗医院收集的现实世界糖尿病数据进行实验来检查。如今,EHealth Service已成为一个蓬勃发展的领域,该领域是指基于计算机的医疗保健和信息提供,以在本地,区域和全球改善卫生服务。通过分析电子健康数据不仅可以照顾患者,而且还通过相应的数据驱动的eHealth Systems提供服务,有效的疾病风险预测模型。 在本文中,我们特别关注预测和分析糖尿病,这是一种日益普遍的慢性疾病,是指在长时间内以高血糖水平为特征的一组代谢性疾病。 k-nearest邻居(KNN)是利用相关健康数据建立这种疾病风险预测模型的最流行和最简单的机器学习技术之一。 为了实现我们的目标,我们提出了基于患者在各个维度中的习惯属性的基于基于学习的预测模型的最佳K-最近的邻居(OPT-KNN)。 此方法确定了误差率较低的最佳邻居数,以在结果模型中提供更好的预测结果。 该机器学习eHealth模型的效果通过对医疗医院收集的现实世界糖尿病数据进行实验来检查。有效的疾病风险预测模型。在本文中,我们特别关注预测和分析糖尿病,这是一种日益普遍的慢性疾病,是指在长时间内以高血糖水平为特征的一组代谢性疾病。k-nearest邻居(KNN)是利用相关健康数据建立这种疾病风险预测模型的最流行和最简单的机器学习技术之一。为了实现我们的目标,我们提出了基于患者在各个维度中的习惯属性的基于基于学习的预测模型的最佳K-最近的邻居(OPT-KNN)。此方法确定了误差率较低的最佳邻居数,以在结果模型中提供更好的预测结果。该机器学习eHealth模型的效果通过对医疗医院收集的现实世界糖尿病数据进行实验来检查。
Results: Patients with early-onset T2D were more likely to have a higher body mass index (BMI), hemoglobin A1C (HbA 1c ), fasting plasma glucose (FPG), total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), serum uric acid (SUA), triglyceride glucose指数(TYG)和TYG-BMI(p <0.05)。较高的TYG-BMI与早发T2D的风险增加有关(P <0.001)。RCSS显示出TYG-BMI和早期发作T2D之间的非线性关系,并且曲线的斜率随TYG-BMI的增加而增加(非线性<0.001)。在亚组分析中,观察到Tyg-BMI与早发性T2D之间的添加剂相互作用,性别,糖尿病,BMI,脂肪肝和高血压的家族史(p <0.001)。ROC曲线表明,TYG-BMI曲线下的面积为0.6781,大于其主要成分(TYG,BMI,FPG,TG)。最佳的截止值为254.865,灵敏度为74.6%,特殊的街区为53.6%。
本报告提出了一例71岁的男子,被诊断出患有广泛的小细胞肺癌(ES-SCLC),后者第一次发生了3次tislelizumab加化学疗法后,他开发了1型糖尿病性酮症酸中毒(DKA)。患者没有糖尿病病史(DM)。根据病史和实验室检查,该病例被明确诊断为Tislelizumab诱导的一种新的1型糖尿病性酮症酸中毒,这是一种免疫检查点抑制剂。尽管免疫检查点抑制剂诱导的1型糖尿病(ICI-T1DM)的发生率很少,但ICI-T1DM的发展,尤其是1型糖尿病性酮症酸酸中毒的发展是威胁生命的,没有血糖监测和胰岛素治疗。早期鉴定高血糖和C肽消耗以及ICI治疗期间常规的血糖监测对于避免致命性内分泌免疫相关性不良事件(IRAE)至关重要。
糖尿病足溃疡 (DFU) 是影响糖尿病患者的一种严重并发症,超过一半的 DFU 都有感染风险。在这些感染中,约 20% 需要截肢 (1、2)。这是一个值得关注的重要问题,因为因 DFU 而截肢的患者的死亡率很高,预计超过一半的患者会在五年内死亡 (3)。此外,治疗和管理 DFU 及其并发症的经济负担超过了五大癌症,仅在美国,每年的费用就超过 110 亿美元 (4)。随着糖尿病 (DM) 患病率的持续上升,DFU 预计将成为全球卫生系统的更大负担,并且可能是最昂贵的糖尿病并发症之一 (5)。尽管在确定 DFU 治疗的新疗法方面取得了显着进步,但对 DFU 的根本病因和管理的早期诊断仍然具有挑战性。 DFU 愈合受损是一种复杂的发病机制,由多种因素引起,包括糖尿病足部感染、伤口缺血、免疫系统衰竭和血糖控制不佳(6-8)。DFU 管理需要在多个时间点评估感染和缺血情况以便更好地管理,但由于其侵入性,目前这种方法受到限制。由于农村地区无法接触到 DFU 伤口中心和临床专家,这个问题更加严重。因此,临床对用于分析伤口感染和缺血检测的非侵入性工具的需求尚未得到满足,这两个关键因素是伤口愈合受损。近年来,深度学习算法在疾病的检测和诊断方面表现出巨大的潜力,特别是在医学成像、放射学和病理学方面(9-11)。这导致了深度学习图像分析作为一种辅助工具的出现,它支持临床医生进行决策,提高疾病诊断和治疗的效率和准确性(12)。深度学习在糖尿病足溃疡的分类和定位方面也显示出了良好的效果。它在缺血和感染分类方面取得了很高的准确率,分别为 87.5% 至 95.4% 和 73% 至 93.5%(13-16)。此外,研究人员在糖尿病足溃疡定位方面也取得了重大进展,平均精度 (mAP) 值在 0.5782 至 0.6940 之间,F1 分数在 0.6612 至 0.7434 之间(17、18)。尽管取得了这些进展,但其中许多工具仍处于开发的早期阶段,缺乏预测感染、缺血和其他对糖尿病足溃疡伤口管理至关重要的身体特征的自动分析能力。此外,目前的伤口分析平台依赖于专有硬件附件,例如热扫描仪(例如 Pod Metrics 的 SmartMat)、使用结构光或激光的 3D 扫描仪(例如 Ekare.ai 的 Insight 3D 和 Swift Medical 的 Ray 1),和光学相干断层扫描 (OCT) 用于可视化和量化与糖尿病足溃疡形成相关的微血管结构 ( 19 , 20 )。这些专门附件的需求可能会限制普通人群获得糖尿病足溃疡治疗的机会。为了解决这些限制,开发一种非侵入性和自动化的工具至关重要,即使在资源有限的地区,也可以全面分析伤口组织。本研究旨在
1个糖尿病的流行病学研究小组,来自主要关注(DAP-CAT)小组,巴塞罗那的支持单位,大学研究所的基金会西班牙,加泰罗尼亚中部2领土管理,加泰罗尼亚卫生研究院,西班牙度假胜地,支持加泰罗尼亚中央的研究Jordi Gol和Gurina(Idiapjgol),St. Buth Bages,西班牙,西班牙,西班牙,卫生主题,西班牙,西班牙,7洛杉矶研究所圣保罗,西班牙巴塞罗那,1个糖尿病的流行病学研究小组,来自主要关注(DAP-CAT)小组,巴塞罗那的支持单位,大学研究所的基金会西班牙,加泰罗尼亚中部2领土管理,加泰罗尼亚卫生研究院,西班牙度假胜地,支持加泰罗尼亚中央的研究Jordi Gol和Gurina(Idiapjgol),St. Buth Bages,西班牙,西班牙,西班牙,卫生主题,西班牙,西班牙,7洛杉矶研究所圣保罗,西班牙巴塞罗那,
2019冠状病毒病(COVID-19)是由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的全球大流行。在严重的COVID-19病例中观察到“细胞因子风暴”,即血流中促炎性细胞因子水平升高。通常,炎性囊泡中含有吡啶结构域3的核苷酸结合寡聚结构域样受体(NLRP3)的激活会诱导细胞因子产生,作为对病毒感染的炎症反应。最近的研究发现糖尿病患者的坏死感染严重程度增加,来自多个国家的数据显示,患有糖尿病等慢性代谢疾病的人的坏死发病率和死亡率更高。此外,COVID-19还可能使感染者易患高血糖。因此,在本综述中,我们探讨了糖尿病炎症囊泡中的NLRP3与COVID-19的潜在关系。相比之下,我们回顾了SARS-CoV-2感染激活炎症囊泡中NLRP3的细胞/分子机制。最后,我们提出了几种有前景的针对炎症囊泡中NLRP3的抑制剂,旨在为临床管理糖尿病合并非冠状肺炎患者的NLRP3靶向药物提供依据。
糖尿病周围神经病(DPN)是一种流行的糖尿病并发症,影响了所有糖尿病患者一半的糖尿病并发症,主要是周围神经损伤,主要是在四肢中(1)。这种情况显着影响,通过慢性疼痛,感觉递减以及脚部并发症的风险增加,施加大量医疗保健成本和生活质量降低(2)。鉴于对其病理生理学的不完全理解和有效的管理策略的稀缺性,因此对可修改的DPN危险因素的识别对于调整预防性和治疗性干预措施至关重要,旨在遏制其发生率和严重性(3,4)。脂肪因子(包括脂联素和瘦素)在糖尿病并发症(如DPN)中的发展,由于它们参与代谢调节和炎症过程,糖尿病的关键因素及其sequelae的关键因素及其后sequelae,因此获得了识别(5)。脂联素以其抗炎和胰岛素敏化作用而闻名,可为诸如动脉粥样硬化和2型糖尿病(6,7)等疾病提供保护。相反,瘦素具有促炎性特征,通常在肥胖症和2型糖尿病中升高,会导致胰岛素抵抗和代谢功能障碍(6,7)。鉴于这些作用,脂联素和瘦素可能会影响DPN的发展。几项研究探索了2型糖尿病患者脂联素和DPN风险之间的联系,结果混合的结果:有些报告是反向关联(8,9),而另一些则没有明显的相关性(10)甚至阳性联系(11,12)。对瘦素和DPN的研究有限,也不一致(11、13、14)。先前的调查通常会遭受小样本量(8、10、11、13、14),缺乏对混杂因素的调整(8、10、13、14)或将各种糖尿病并发症聚集成单个结果变量(12)。因此,脂联素和瘦素水平与DPN风险之间的关系需要进一步研究。本研究旨在研究脂联素和瘦素的循环水平与糖尿病患者发展DPN的风险之间的关系。通过阐明这些关联,我们的研究可能有助于促进脂肪因子在糖尿病并发症中的作用的越来越多的证据,并为预防和管理DPN的策略提供了发展。
妊娠期缺铁对孕产妇和胎儿的不良影响仍然是一个全球性的健康问题,影响着 10 - 90% 的孕妇 ( 1 ),因为铁是一种有害的补充剂。根据世界卫生组织的建议,每日口服补铁(每日摄入 30-60 毫克元素铁)应成为常规产前护理的一部分,以避免不良的孕产妇和胎儿结局,包括宫内生长受限、早产以及新生儿和围产期死亡 ( 1 ) ( 2 )。然而,当孕妇摄入过量的铁时,很容易对新生儿和母亲造成潜在的伤害,因为新兴研究表明,生命早期造血期间接触高铁可能会诱发贫血,对发育产生重大影响,并可能降低促红细胞生成素敏感性,从而限制红细胞生成 ( 3 ) ( 4 ) ( 5 )。血清铁蛋白是一种主要的铁储存蛋白,是广泛使用的全身铁储存标记物,具有纳米大小的水合氧化铁核心和笼状蛋白质外壳,含有 20% 的铁。最近越来越多的研究发现,血清铁蛋白浓度较高也与妊娠期代谢紊乱有关,如妊娠期糖尿病 (GDM)、血清脂类异常、胰岛素抵抗 (IR),胰岛素抵抗通过稳态模型评估-胰岛素抵抗 (HOMA-IR)、稳态模型评估-胰岛素分泌 (HOMA-IS) 和稳态模型评估-b 细胞功能 (HOMA-b) 等指标计算 (6)(7)(8)(9)。相反,还有其他相互矛盾的研究表明,补铁不会增加 GDM 的风险,但就妊娠结局而言对母亲和胎儿大有裨益 (10)(11)。考虑到研究的缺乏且结果相互矛盾,为了评估中国妊娠人群血清铁蛋白与代谢紊乱之间的关系,我们利用上海市第一人民医院孕妇的流行病学数据,探讨血清铁蛋白水平与妊娠期糖尿病、血脂异常、胰岛素抵抗等代谢紊乱患病率之间的关联。
糖尿病管理的一个重要措施是监测血糖,这往往需要连续采血,带来经济负担和不适。血糖和糖化血红蛋白A1c是传统的血糖监测指标。但现在糖化白蛋白、果糖胺和1,5-脱水葡萄糖醇(1,5-AG)越来越受到关注。1,5-AG是人体内化学稳定的单糖。当血糖水平正常时,其血清浓度保持稳定。然而,当血糖超过肾糖阈值时,它会降低。研究表明,1.5-AG反映1至2周内的血糖变化;因此,血清1,5-AG水平降低可以作为短期血糖紊乱的临床指标。最近的研究表明,1,5-AG不仅可用于糖尿病的筛查和管理,还可用于预测糖尿病相关不良事件和糖尿病前期患者的胰岛b细胞功能。此外,唾液1,5-AG在糖尿病的筛查和诊断中也具有潜在的应用价值,本文就1,5-AG的生物学特性、检测方法及临床应用等方面进行综述,以促进今后对1,5-AG的认识和应用研究。
糖尿病性心肌病(DCM)是糖尿病的常见并发症之一,作为特定的心肌病,在心脏的结构和功能上具有异常。随着糖尿病患病率的增加,DCM在全球范围内具有高发病率和死亡率。最近的研究发现,作为一种程序性细胞死亡,伴有炎症反应,加剧了DCM的生长和起源。这些研究为探索DCM的潜在处理提供了理论基础。Therefore, this review aims to summarise the possible mechanisms by which pyroptosis promotes the development of DCM as well as the relevant studies targeting pyroptosis for the possible treatment of DCM, focusing on the molecular mechanisms of NLRP3 in fl ammasome-mediated pyroptosis, different cellular pyroptosis pathways associated with DCM, the effects of pyroptosis occurring in different cells on DCM和针对NLRP3炎症/热胞菌的相关药物用于治疗DCM。本评论可能为开发DCM的治疗剂提供了新的视角和基础。