1诺曼底大学药学和医学学院,Unirouen,Inserm(国家健康与医学研究所)UMR1096(Envi Laboratory),法国Rouen,FHU Carnaval; 2诺曼底大学生物科学学院,Unirouen,Primacen,Mont Saint Aignan,法国; 3诺曼底大学生物科学学院,Unirouen,Inserm umr1239(DC2N实验室),法国蒙特·圣艾尼亚山; 4诺曼底大学药学和医学学院,Unirouen,Inserm(国家卫生与医学研究所)UMR1234(Panther Laboratory),法国Rouen; 5慈善机构柏林慈善机构 - 柏林FreieUniversität的公司成员和Humbold-NuniversitätZu Berlin,医学与人类遗传学研究所,奥古斯滕堡Platz 1,13353柏林,德国; 6柏林卫生研究院慈善机构 - 柏林大学,柏林大学,柏林大学再生疗法中心,奥古斯都堡普拉茨(Augustenburger Platz)1,13353德国柏林;和7 UMR 1148,INSERM-PARIS大学,X. Bichat医院,法国巴黎
摘要:心力衰竭(HF)是一种进行性慢性病,仍然是全球死亡的主要原因,影响了6400万以上的患者。HF可能是由具有单基因病因的心肌病和先天性心脏缺陷引起的。与心脏缺陷发展相关的基因和单基因疾病的数量正在不断增长,并包括遗传的代谢杂志(IMD)。已经报道了几种影响各种代谢途径的IMD,出于心肌病和心脏缺陷。考虑到糖代谢在心脏组织中的关键作用,包括能量产生,核酸合成和糖基化,与心脏表现相关的越来越多的与碳水化合物代谢相关的IMD越来越多。在这项系统的综述中,我们提供了与碳水化合物代谢相关的IMD的全面概述,这些IMD呈现出心肌病,心律失常疾病和/或结构性心脏缺陷。我们识别出患有心脏并发症的58 IMD:3糖/糖连接转运蛋白的缺陷(GLUT3,GLUT10,THTR1); 2个磷酸盐途径的疾病(G6PDH,TALDO); 9糖原代谢疾病(GAA,GBE1,GDE,GYG1,GYS1,LAMP2,RBCK1,PRKAG2,G6PT1); 29 congenital disorders of glycosylation (ALG3, ALG6, ALG9, ALG12, ATP6V1A, ATP6V1E1, B3GALTL, B3GAT3, COG1, COG7, DOLK, DPM3, FKRP, FKTN, GMPPB, MPDU1, NPL, PGM1, PIGA, PIGL, PIGN, PIGO,PIGT,PIGV,PMM2,POMT1,POMT2,SRD5A3,XYLT2); 15碳水化合物连接的溶酶体储存疾病(CTSA,GBA1,GLA,GLB1,HEXB,IDUA,IDS,IDS,SGSH,NAGLU,HGSNAT,GNS,GNS,GALNS,GALNS,GALNS,ARSB,ARSB,GUSB,GUSB,ARSK)。通过这项系统评价,我们旨在提高人们对碳水化合物连接IMD的心脏介绍的认识,并引起人们对碳水化合物连接的致病机制的注意,这些致病机制可能是心脏并发症的基础。
结果:CS-SNRK - / - 小鼠对TAC的反应41表现出更差的心脏功能和心脏肥大,并且心脏中DDR Marker PH2AX的增加。此外,体外SNRK 42敲低导致DNA损伤和染色质压实增加,核平整度和3D体积的变化43。磷酸化 - 蛋白质研究确定了一个新型的SNRK靶标,44 DSTN,这是F-肌动蛋白去聚合因子(ADF)蛋白的成员,该蛋白直接与直接结合的F-actin结合,45 dypoletymerize F-肌动蛋白。SNRK与DSTN结合,除了细胞肥大外,DSTN下调还会逆转多余的DNA 46损伤和核参数的变化,而SNRK 47敲低。我们还证明,SNRK敲低促进了过度的肌动蛋白48解聚,该解聚,通过球状(G-)肌动蛋白与F-肌动蛋白的比率增加。最后,F-肌动蛋白的药理学稳定剂Jasplakinolide 49挽救了SNRK中DNA损伤增加和50个异常核形态的稳定剂。51
引言线粒体通过氧化磷酸化(OXPHOS)产生ATP,但它们也参与了包括氧化还原信号(1),代谢物信号传导(2),钙信号传导(3)的多种生物学功能,以及从细胞中逃脱并在远处组织(4,4,5)上产生的应力信号。mito-Conchondria在合成与组蛋白和DNA表观遗传学修饰的合成生物液中也起着重要作用(6)。最后,线粒体对于产生脂质,蛋白质和核苷酸生物合成所需的底物至关重要,这对于快速增殖的细胞中生物量的生物量是必需的。在代谢活性组织(如心脏)的有丝分裂细胞中,ATP产生被认为是线粒体的主要功能。然而,线粒体的其他功能在成熟心脏中继续促进心肌细胞功能和表型的程度尚未完全理解。
结果:回顾性队列包括71名患者。在删除PRDM16的个体中,有34.5%的心肌病发展,而未删除的PRDM16的个体中有7.7%(p = 0.1)。在回顾性和系统评价队列中(n = 134),PRDM16缺失 - 相关的心肌病风险被概括且显着(29.1%对10.8%,p = 0.03)。PRDM16缺失与死亡,心脏移植或VAD的风险增加有关(p = 0.04)。在删除的PRDM16中,有34.5%的女性发展为心肌病,而其男性同行的16.7%(p = 0.2)。我们发现女性PRDM16 CKO小鼠的收缩功能障碍和纤维化的发生率和严重程度的性别差异。此外,雌性PRDM16 CKO小鼠的死亡率显着升高(p = 0.0003)。
心脏免疫微环境的调节对于诸如心肌梗塞(MI)之类的缺血性事件后的恢复至关重要。内皮细胞(EC)可以具有免疫调节功能;然而,MI之后的EC与心脏中的免疫环境之间的相互作用仍然很少理解。我们确定了成人和小儿心力衰竭(HF)组织中的EC特定的IFN反应性和免疫调节基因特征。对经过MI的鼠心脏的单细胞差异分析发现了与人类HF中类似的免疫基因特征的EC人群(IFN-EC)。IFN-EC富含复制阶段的小鼠心脏,并表达编码免疫反应转录因子(IRF7,BATF2和STAT1)的基因。单细胞染色质可及性研究表明,在IFN-EC签名基因上,这些TF基序的富集。IFN-ECs通过IFN-ECs对免疫调节配体基因表达的表达表明,再生阶段心脏中IFN-EC和巨噬细胞之间的双向信号传导。我们的数据表明,EC可以在心脏损伤后采用免疫调节签名以伴随赔偿反应。这些特征在人类HF和鼠MI模型中的存在表明,EC介导的免疫调节在MI中急性损伤引起的应激和HF中慢性不良改造引起的应激方面具有潜在的作用。
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。此预印本版的版权持有人于2023年3月21日发布。 https://doi.org/10.1101/2023.03.13.13.23287237 doi:medrxiv preprint
。cc-by-nc-nd 4.0国际许可证。根据作者/资助者,它是根据预印本提供的(未经同行评审的认证),他已授予Biorxiv的许可证,以在
sirtuins(Sirt)表现出脱乙酰化或ADP-核糖基转移酶活性,并调节细胞核,线粒体和细胞质中的各种细胞过程。尚不清楚唯一驻留在细胞质中的SIRTUIN SIRT2在心力衰竭发展(HF)和心脏肥大中的作用。在本文中,我们表明删除SIRT2(SIRT2 - / - )的小鼠的心脏在缺血 - 重新灌注(I/R)和压力重载(PO)后显示出改善的心脏功能(PO),这表明SIRT2对压力的响应对心脏中的心脏不良效应发挥了不良适应性作用。在具有心肌细胞特异性SIRT2缺失的小鼠中获得了相似的结果。机械研究表明,SIRT2调节核因子的细胞水平和活性(红细胞衍生的2)类似2(NRF2),从而导致抗氧化剂蛋白的表达降低。在sirt2 - / - 鼠标心脏中删除NRF2,在PO之后逆转了保护。最后,用特定的SIRT2抑制剂对小鼠心脏进行处理可减少心脏大小,并减轻对PO的心脏肥大。这些数据表明SIRT2在心脏中具有有害作用,并且在HF和心脏肥大的进展中起作用,这使该蛋白成为SIRT家族的独特成员。此外,我们的研究还通过以药理学为目标,为心脏肥大的治疗提供了一种新颖的方法,为治疗这种疾病提供了一种新颖的途径。
背景:全身性淀粉样变性代表了一组蛋白质不满意的疾病,这些疾病赋予了全球数百万患者的发病率和死亡率。经硫代蛋白心脏淀粉样变性(ATTR)是一种特别毁灭性的淀粉样蛋白疾病,影响中年和老年人,并导致心肌病(ATTR-CM),其中位存活率为2.5至3。5年[1,2]。attr-cm可以是遗传性的,导致年轻患者的侵略性疾病病程。美国最普遍的TTR变体是V122i,在3-4%的非裔美国人中发现了这一点[3]。尽管医疗保健负担很大,但由于缺乏疾病意识和有限的诊断技术,Attr-CM仍未诊断出来[4]。在过去的十年中,体内模型的信息性很难被证明是难以捉摸的[5]。此外,由于淀粉样蛋白原纤维沉积而没有可用的治疗方法来逆转心脏功能障碍[1,6,7]。因此,对ATTR-CM的分子机制的更好理解对于开发新型有效疗法至关重要。