使用连续波的光学检测到的磁共振光谱在纤维顶传感器构型中,团队估计NV浓度和T₂*(DeCherence时间)分别为0.05 ppm和0.05μs。传感器的渐变计设置,两个传感器位于母线的两侧,在没有磁性屏蔽的情况下显示出小于20 nt/hz 0.5的噪声底。此外,磁场噪声的艾伦偏差保持在0.3μt以下,这使得在10 ms至100 s的累积时间内检测到低至10 mA的母线电流。
Zhiqin Chu受到启发,使用粘性胶带通过单层石墨烯发现故事从硅表面上删除钻石胶片。Konstantin Novoselov和Andre Geim赢得了2010年诺贝尔物理奖,因为您可以使用粘性胶带从石墨(铅笔线索中的材料)剥离一层石墨烯。
追求高水平的掺杂而不会恶化结晶度是非常困难的,但对于释放材料的隐藏力至关重要。这项研究证明了通过激光至关重要的自由基,硼龙二氢化合物(BH 2)的激光振动激发(BH 2)在燃烧化学蒸气期间保持晶格完整性的有效途径。改进的钻石结晶度归因于硼氢化硼(BH)的相对丰度的激光,热抑制的热抑制,其过度存在会诱导硼隔离并扰乱结晶。BDD的硼浓度为4.3×10 21 cm -3,膜电阻率为28.1毫米·CM,孔迁移率为55.6 cm 2 v -1 s -1,超过了商业BDD。高导电和结晶的BDD在传感葡萄糖方面具有提高的效率,证实了激光激发在产生高性能BDD传感器方面的优势。在掺杂过程中重新获得激光激发的结晶度可以消除半导体行业的长期瓶颈。
1 Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany 2 Institute of Solid State and Materials Physics, TU Dresden, Haeckelstraße 3, 01069 Dresden, Germany 3 Institute of Physical Chemistry, TU Dresden, Haeckelstraße 3, 01069 Dresden, Germany 4 SLAC National Accelerator美国孟洛克公园,美国孟洛公园,美国美国5物理研究所,阿尔伯特·恩斯坦 - 斯特林大学。
为了最大程度地减少或消除沟槽,最好有利于蚀刻过程的化学成分。因此,我们决定继续使用ICP-RIE进行O 2等离子体蚀刻,这是因为在表面形态和各向异性蚀刻方面具有令人鼓舞的结果,因此我们已经研究了血浆参数的影响ICP和偏置功率,尤其是使用两种类型的口罩:铝和硅二氧化物(Sio-dioxide)(Sio 2)。3- O 2在Sentech Si500-Drie设备上进行了用铝面膜钻石蚀刻的等离子体蚀刻。测试样品是(100)方向的单晶CVD钻石底物和元素六的3 x 3 mm 2尺寸。第一步涉及溶剂和酸的化学清洁,以去除可能影响蚀刻和产生粗糙度的污染物。然后将钻石底物涂在光线器上,并用激光光刻降低,以定义掩模图案。然后通过热蒸发沉积700 nm厚的铝面膜。金属薄膜,例如铝,由于其在钻石上的良好粘附性[24]及其良好的蚀刻选择性[25],因此将其用作单晶钻石蚀刻的硬面膜材料。此外,由于血浆中的寿命不足,尤其是在氧气中,因此与光致剂相比,金属面膜仍然是更好的选择。3.1 o 2等离子蚀刻的p icp = 500W和p偏见= 5W我们研究的第一个蚀刻条件是:p icp = 500 w,p sial = 5 w,压力= 5吨,气体流量= 25 sccm,温度= 18°C。每个蚀刻步骤都限制为30
彩色光学中心是晶格中的功能缺陷,在原本透明的钻石中吸收并发出光。它们具有有趣的物理特性,具有各种可能的应用,从量子通信到生物医学。这项工作旨在研究与SI-V中心相关的光电压的产生,以在与有机分子相互作用中使用。作品的部分任务是:1)熟悉有关材料和方法的推荐和对文献的熟悉。准备自己的重点概述,概述当前的艺术状态。2)设计合适的设置,并在SIV中心对纳米晶钻石薄层的SIV中心上的工作函数和光伏作为激发波长的函数。3)对具有不同厚度,不同表面修饰(氢,氧)的样品进行测量,作为时间和照明的功能。使用可调激光器来照亮样品并对波长400-800 nm进行测量。4)评估和比较各种样本系列的工作函数和光电压趋势。
本论文进行了文献综述,以评估有关纳米金刚石 (ND) 及其应用的当前知识状态,包括它们在刺激响应材料中的应用。进行理论审查后发现,虽然 ND 因其出色的性能而受到重视,但对其在可持续和智能材料中的应用研究仍然有限。这表明可能存在知识差距,科学界对该主题的研究可能还不够,以至于在理论测试条件之外的现实应用中广为人知或使用。这表明该主题在当前时间和地点值得研究。案例研究展示了 ND 在水净化、有机太阳能电池和自修复材料等应用中的变革潜力。这些案例研究强调了纳米金刚石增强耐用性、效率和环保性的能力。Carbodeon Ltd Oy 的采访见解提供了关于知识差距、未来前景和 ND 商业化的实用观点。研究结果强调需要进一步研究和合作,以充分发挥 ND 作为材料科学创新和可持续解决方案基石的潜力。
I16 是一条位于 Diamond Light Source 的高通量、高分辨率 X 射线光束线。该光束线工作在 2.7-15 KeV 范围内,是一种专为研究单晶样品的共振和磁散射过程而优化的衍射设备 [1]。共振弹性 X 射线散射是表征材料的电子、磁性和结构特性的理想选择,因为它对原本较弱的散射过程具有增强的灵敏度,可提供光谱信息和化学选择性。I16 的主仪器是一台大型 6 圆 K 衍射仪,能够适应各种辅助环境。该光束线可完全控制其大部分能量范围内的入射光子偏振。它与大光子计数面积探测器和安装在 K 衍射仪上的真空线性偏振分析仪相结合,用于隔离和增强与有序现象相关的特定散射过程。