为了模拟 NV 自旋对 MW 场(特别是磁场分量)的响应,使用量子主方程方法推导出理论方程。在室温下,NV 自旋包含 NV − 的基态和激发自旋三重态、NV − 的两个中间态以及两个 NV 0 态。由于 1 A 1 的自旋寿命远小于 1 E 的寿命(参见正文),因此单重态实际上被假定为一个状态(1 E)。NV 0 态的包含解释了导致电荷状态切换的电离效应。在 NV 0 态下,它可以被光泵送回 NV − 的基态三重态。图 S.I.1 显示了由九个能级组成的 NV 能量图。如果忽略电离效应,在简并三重态的情况下,可以使用具有更少能级的更简单的模型。建模 ODMR 的基本状态是 NV − 的基态、中间态和激发态。但是,由于 NV 0 和 NV − 之间的跃迁速率
抽象的钻石涂层具有许多出色的特性,使其成为高性能表面应用的理想材料。但是,没有革命性的表面修改方法,钻石涂层的表面粗糙度和摩擦行为会阻碍其满足高级工程表面要求要求的能力。这项研究提出了在涂料界面上的热应力控制,并通过激光诱导和机械切割证明了在常规钻石涂层表面上进行精确石墨化的新过程,而不会损害金属底物。通过实验和模拟,阐明了表面石墨化和界面热应力的影响机制,最终使钻石涂层表面向石墨烯的快速转化,同时控制涂层的厚度和粗糙度。与原始的钻石涂层相比,获得的表面显示出摩擦系数降低63%–72%,所有摩擦系数均低于0.1,至少为0.06,特定磨损率降低了59%–67%。此外,摩擦对应物中的粘合剂磨损受到显着抑制,从而使磨损降低了49%–83%。这表明机械化学磨损特性的润滑和抑制作用显着改善。本研究提供了一种有效且成本效益的途径,以克服工程钻石表面的应用瓶颈,有可能显着提高性能并扩大钻石涂层组件的应用范围。
L3Harris Technologies是国防工业中值得信赖的破坏者。始终牢记客户的关键任务需求,我们的员工提供了端到端的技术解决方案,以连接空气,土地,海洋,海洋和网络域,以实现国家安全的利益。有关更多信息,请访问l3harris.com。
Cornes Technologies Limited 负责 Seki Diamond Systems 的高级董事总经理 Makoto Seki 表示:“我们很荣幸能与 Element Six 合作。我们的初始原型已经证明 E6 的技术可以成功集成到我们的平台上。我们相信,此次合作将为我们的学术客户提供另一个 Seki Diamond 平台,以利用无与伦比的技术加速他们的钻石材料研发计划。”
摘要宣布了几项新的钻石开放访问(OA)相关的计划,并创建了全球钻石开放式通道的峰会,Diamond OA现在处于OA运动的最前沿。但是,在研究我们最近的定量科学研究出版物和数据集的同时,我们注意到暂时放弃文章处理费用(APC)是大出版商在其某些期刊上的常用策略。在没有钻石期刊指数的情况下,大多数研究都将钻石期刊的鉴定为不收取APC的黄金期刊的子集。尽管这是一种务实的方法,但我们担心它可能破坏研究对理解我们认为的钻石OA所理解的价值。这封信讨论了对书目计量研究的必要性,以在没有APC的情况下将钻石OA运行如何应用。我们呼吁出版部门在出版成本上更加透明。最终,我们认为,透明度和对NO-APC出版的长期承诺对于Diamond OA成功是必要的,并且在寻求理解模型时,研究界需要应用此标准。关键字:开放访问发布,开放访问,文章处理费用,钻石开放访问,开放科学,在被称为Diamond Open Access(OA)之前,OA的模型不向读者或作者收取世界许多地方的规范,尤其是在拉丁美洲(Alperin&Fischman,2015年)。这是务实的,以及宣布了几项与钻石OA相关的新举措,例如钻石开放式行动计划,直径和手工艺性OA项目,以及最近在钻石开放式钻石开放式通道上创建的全球峰会,很明显,钻石OA现在已经处于OA运动的最前沿。关于钻石OA的许多兴奋源于一种信念,即它可以根据文章处理费用(APC)来解决作者付费模型中固有的不平等现象。尽管有这种乐观,直到最近,关于钻石OA的吸收,成本,劳动力和影响的数据很少(Bosman等,2021)。因此,越来越多的研究试图理解该模型也就不足为奇了(Becerril等,2021; Bosman等,2021; Khanna等,2022; Simard等,2022; Simard等,2023)。在没有钻石OA期刊指数的情况下,大多数研究(包括我们自己的一些研究)都将钻石OA期刊的识别识别为不收取APC的金OA期刊的一个子集(在任何给定的分析时刻)。
量子信息技术提供了通过在量子计算机之间分布纠缠的安全渠道来实现未经原理的计算资源的潜力。Diamond作为可光学访问的旋转Qubt的主机,是一个领先的平台,可以实现扩展此类量子链接所需的量子存储节点。光子晶体(PHC)腔增强了光质的相互作用,对于分别用于存储和传达量子信息的旋转和光子之间的有效界面至关重要。在这里,我们演示了用薄膜钻石制造的一维PHC腔,分别具有1.8×10 5和1.6×10 5的质量因子(Q),是任何材料中实现的可见PHC腔最高QS。重要的是,基于常规的平面制造技术,我们的制造过程是简单且高收益的,与先前的复杂底切工艺相反。我们还展示了具有高光子提取效率的纤维耦合的1D PHC腔,以及单个SIV中心和在4 K时的此类腔之间的光学耦合,达到18。purcell系数。所证明的光子平台可能从根本上提高量子节点的性能和可扩展性,并加快相关技术的开发。
摘要 金刚石中的氮空位 (NV) 缺陷中心是量子传感和量子计算应用的关键。它们在金刚石晶格中产生局部电子态,在光激发后具有不同的群体弛豫路径,最终使其具有独特的性能。已知缺陷存在于两种电荷状态:中性和负电荷状态,分别具有一个和两个已知的光学活性电子跃迁。在这里,我们报告了在两种电荷状态下观察到的大量迄今未被发现的激发电子态,这可以通过光谱中红外到紫外部分的明显光学跃迁来证明。通过使用瞬态吸收光谱监测光激发后 NV 中心的电子弛豫来观察这些跃迁,直接探测在飞秒到微秒的时间尺度上发生的瞬态现象。我们还首次探究了从 NV − 的 3 E 态到附近的单取代氮缺陷 (N s ) 的电子转移动力学,这导致了众所周知的 NV 光致发光猝灭效应。
1 Precision制造中心,DMEM,Strathclyde大学,格拉斯哥,英国w.xie@strath.ac.uk摘要摘要实现了对氧化增长的精确控制已成为局部阳极氧化(LAO)纳米术的质量控制的关键瓶颈,这是由于缺乏有效的流程监测和反馈控制方法而导致的纳米术。在这种情况下,本文提出并提出了一种现场检测方法,使用高度耐用的导电钻石涂层探针在老挝过程中实时监测氧化生长的状态。研究结果表明,使用钻石涂层的探针可以在微型水平上诱导具有瞬态电流的可控老挝,并创建高度超过18 nm的纳米结构,这尤其优于使用掺杂的硅探针获得的纳米结构。还证明,在一定的电压范围内,检测到的电流可以反映纳米碱制造过程中氧化的生长,检测到的电流与氧化表面的电导率相关,表明氧化程度。可以预期,与柔性脉冲调制的组合将有助于一种柔性,简单的方法来调整氧化生长,为生产高质量的氧化物线铺平道路。原子力显微镜,监测,纳米制造,氧化
o要制作钻石晶体模型,您至少需要14个半长牙签。o要制作一个石墨烯单元,您将需要6个半长的牙签。背景知识钻石颜色中心:钻石是一种晶体,其中碳原子以非常强大的晶格结构排列。想象一个3D网格,每个交叉点都有一个碳原子。这种僵化的结构使钻石使他们难以置信的硬度和清晰度。每个碳原子在四面体构型中粘结到其他四个碳原子,形成了一种延伸到各个方向的重复模式。钻石晶体可以采用不同的颜色。这种缺陷会中断碳原子的常规排列,并可以吸收并发出光,这通常使钻石具有特定的颜色。这些颜色中心不仅与美学有关;它们具有独特的电子和光学性能,这些特性对于各种量子应用都很感兴趣,包括使用钻石发出的光来测量非常小的磁场(量子传感)以及编码和传输安全信息(量子通信)。石墨烯:石墨烯是在二维蜂窝晶格中排列的单层碳原子。图片由六角形组成的平板,类似于蜂窝,每个角是一个碳原子与其他三个原子结合在一起的。这种结构使石墨烯具有令人难以置信的强度,甚至比钻石更强壮,但它非常灵活且轻巧。石墨烯也是