二氮氧化物(DZX)仍然是治疗长期和持续形式高胰岛素低血糖(HH)的第一线药物。在近40% - 50%的HH病例中,遗传机制是未知的。几乎一半的具有永久性或遗传原因的婴儿对DZX敏感,但是对DZX的超敏反应极为罕见,并且该机制知之甚少。在这里,我们第一次报告了与HH的新生儿中DZX超敏反应的案例,HH继承了母亲的新型HNF1A变体。一个术语,是糖尿病母亲的男性大胎龄婴儿,出现了严重的,复发性低血糖的早期发作。降血糖确认HH时临界血液样本。二氮氧化物以5 mg/kg/day的常规剂量开始,导致高血糖(血糖,16.6 mmol/l)在48小时内。葡萄糖输注迅速断奶。dzx被扣留并最终停止。单独使用3天的牛奶饲料,并具有正常的葡萄糖效果,怀疑HH的分辨率,他接受了6小时的禁食研究并通过了。在医院的葡萄糖监测时,他再次出现降血糖发作,关键血液样本确认了HH。dzx以3 mg/kg/day的较低剂量重新启动,这需要在获得稳定的尤利西亚之前进一步下降至0.7 mg/kg/day。不再发生低血糖或高血糖发作,他在出院前通过了一项安全禁食研究。分子基因检测确定了母亲 - 儿童二元的新型HNF1A突变,而父亲则测试了阴性。我们得出的结论是,由于这种新型HNF1A突变引起的HH表型可能是突变的,并且需要非常低剂量的DZX。临床医生应在启动DZX治疗的同时,应仔细观察糖尿病性酮症酸中毒和高血糖高质量状态的风险。
摘要。固氮微生物(固氮菌)通过将氮气还原为生物可利用氮,显著影响海洋生产力。最近,非蓝藻固氮菌(NCD)已被确定为海洋固氮的重要贡献者。其中,Gamma A 是研究最深入的海洋 NCD 之一,因为它无处不在;然而,控制其分布的因素仍然未知。特别是,微型浮游动物摄食作为自上而下控制的重要性尚未得到检验。在本研究中,我们使用 nifH 扩增子测序研究了固氮菌群落结构,并使用稀释实验和定量聚合酶链反应(PCR)相结合的方法量化了 Gamma A 的生长和微型浮游动物摄食死亡率,地点位于日本南部海岸黑潮北缘光照充足的水域。在研究区域,Gamma A 普遍存在并在固氮菌群落中占主导地位,而蓝藻固氮菌的相对丰度较低。Gamma A 的微型浮游动物摄食率明显高于整个浮游植物群落,并且通常与其生长率保持平衡,这表明 Gamma A 可以有效地将固定氮转移到更高的营养级。尽管 Gamma A 的生长率对营养物添加没有表现出明显的反应,但 Gamma A 的丰度与营养物浓度和微量元素含量有显著的关系。
目的:三磷酸腺苷敏感钾通道开放剂二氮氧化物可模拟缺血性预处理并具有心脏保护作用。明确二氮氧化物的作用位点和作用机制可为接受心脏手术的患者提供有针对性的药物治疗。几种线粒体候选蛋白已被研究作为潜在的三磷酸腺苷敏感钾通道成分。肾外髓质钾 (Kir1.1) 和磺酰脲类敏感调节亚基 1 被认为是线粒体三磷酸腺苷敏感钾通道的亚基。我们假设,在伴有心脏停搏液的全身缺血模型中,药物阻断或基因缺失 (敲除) 肾外髓质钾和敏感调节亚基 1 将导致二氮氧化物失去心脏保护作用。
阿尔茨海默氏病(AD)是痴呆症的最常见原因,也是最普遍的神经退行性疾病之一。它始于轻度的认知障碍,并逐步影响患者生活功能的各个方面。阿尔茨海默氏病在老年人中更常见,并且发生了渐进率。随着老年人口的全球增长,阿尔茨海默氏病构成了重大威胁。此外,当前的药物不能阻止AD,强调需要在AD治疗中使用新药分子。尽管1,3,4-甲二唑具有许多生物学活性,例如抗癌和抗病毒,但也正在研究其对乙酰胆碱酯酶(ACHE)的活性。为此,本研究合成了三种新的1,3,4-噻二唑化合物。使用1 H-NMR和HRMS分光光度法方法进行了这些化合物的结构测定。使用改良的Ellman方法在体外进行了活性研究。由于活性测试,化合物3b显示出与多奈代齐最接近的效果,IC 50 = 0.096±0.004 µm。
参与癌症发展和进展的细胞过程。30 – 33因此,已设计和合成了许多杂环衍生物,以用作抗癌剂。在这些结构中,五元杂环,例如吡唑、噻唑和噻二唑,是特别重要的化合物。34 – 37吡唑环作为具有两个相邻氮原子的五元杂环,存在于具有不同用途的广泛化合物中。此外,众所周知,吡唑,无论是天然存在的还是合成的,都具有广泛的生物学特性(图 1 中给出了一些具有生物活性的吡唑)。38噻唑部分是一种重要的芳香族五元杂环。其独特的生物学特性是由硫和氮原子决定的,噻唑骨架存在于 18 种以上经 FDA 批准的药物中。39 研究表明,含噻唑的化合物具有多种生物学特性,如抗真菌、40 抗菌、41 抗癌、28 利尿、42 抗炎、43 镇痛、44
摘要:已合成2,5-双(4-吡啶基)-1,3,4- - 奥沙唑(4-Pox),并研究了1M HCl溶液中使用重量范围的1M HCl溶液中的碳钢(CS)作为有机耐受抑制剂的有机耐抑制剂。浓度并随着温度培养基的增加而降低。A mixture of physisorption and chemisorption is proposed for the corrosion inhibition mechanism and the process followed the kinetic/thermodynamic model of Langmuir in the temperature range from 303 to 343 K. The adsorption and kinetic parameters for CS/4-POX/1 M HCl system were calculated from experimental gravimetric data and the interpretation of the results are given.DFT计算,并应用于分析合成抑制剂与CS表面的相互作用。此外,还计算了福克(Fukui)指数,以确定最合理的亲核和亲电攻击位点。
摘要:一组新型的供体 - 受体donor(D-A-D)苯甲二唑衍生物已合成并在纳米晶体中结晶,以探索其化学结构与波导发光特性之间的相关性。的发现表明,所有晶体都表现出发光和主动的光学波形,这表明能够根据附着在苯甲酰甲二氮唑核的供体组中调节其在550–700 nm的宽光谱范围内。值得注意的是,每种化合物的同型能量间隙与相应光波导的颜色发射之间存在明显的关系。这些结果肯定了通过合适的化学功能化来修饰有机波导的颜色发射的可行性。重要的是,本研究标志着出于这种目的的苯甲酰基衍生物的首次利用,强调了这项研究的独创性。此外,纳米晶体的获得是实施微型光子设备的关键工具。
1卢布林卢布林生活科学生命科学与生物技术学院化学系,阿卡迪米卡(Akademicka)15,20-950 lublin,波兰; iwona.budziak@up.lublin.pl 2 Jagiellonian大学的精确和自然科学博士学位,St. dominika.kaczmarczyk@doctoral.uj.edu.pl 3 3理论化学系,贾吉洛隆大学化学学院,jagiellonian大学,gronostajowa 2,30-387kraków,波兰4,波兰4生物物理学,生物学系,环境生物学学院,环境生物学学院,Life of Life Sci of Life Sci in clublines of Life Sci in clublins in life cliens in l Life Sci in in 9 libl in lublins in lublin oblin in lublin,波兰; klaudia.rzad@up.lublin.pl 5玛丽亚·库里·斯克洛多夫斯卡大学(Maria Curie-Sklodowska University,akademicka)19,20-033卢布林,波兰卢布林; mariusz.gagos@mail.umcs.pl 6卢布林医科大学生物化学与分子生物学系,波兰卢布林20-093; Andrzej.stepulak@umlub.pl 7植物生理学和生物化学系,生物化学学院,生物物理学和生物技术学院,Jagiellonian University,Gronostajowa 7,30-387 Krak rand; B.Mysliwa-kurdziel@uj.edu.pl 8化学技术与环境分析系(C1),化学工程技术学院,克拉科夫技术大学,华盛斯卡大学24,31-155 Krak rand,波兰; dariusz.karcz@pk.edu.pl(D.K.); karolina.starzak@pk.edu.pl(K.S.)9 Ecotech-Complex - 高级环境友好技术的分析和计划中心,Maria Curie-Sklodowska University,Gł˛eboka,Gł˛eboka39,20-033 Lublin,波兰10物理学学院波兰; gotardb@amu.edu.pl *通信:monika.srebro@uj.edu.pl(m.s.-h.); arkadiusz.matwijczuk@up.lublin.pl(a.m.);电话。: +48-12-686-2383(M.S.-H。); +48-81-445-6909(A.M.)
https://doi.org/10.26434/chemrxiv-2023-6kt1w-v4 orcid:https://orcid.org/0000-0000-0001-9765-5975 chemrxiv不同行审查的内容。许可证:CC BY-NC-ND 4.0