气候变化显着和不利影响了全球环境,生物多样性和可持续的人类发展,主要是通过修改全球温度模式,水文循环和诱导酸性(Habib等,2025)。海洋中的主要反应变量(例如,物理,化学和生物学)可以用作气候变化影响的前哨指标。在当代和即将到来的气候变化情景中,预期的水生生物多样性的灭绝率通常大于陆地物种的灭绝率(Huang等,2021)。小规模的鱼纹(SSFS)显着有助于粮食安全,减轻贫困,就业和维持健康的海洋生态系统(Gatta,2022),因此促进了某些可持续发展的发展目标的实现。尽管是全球数百万的主要生计选择,但SSF遇到了与全球化,气候变化和过度融化相关的不确定性和可变性的升级(Nilsson等,2019)。气候变异性通过影响杂种资源,捕捞者的生计以及更改人口和生产价值来对SSF构成重大危险(Mbaye等人,2023年)。沿海地区尤其容易受到全球变暖的有害影响,这主要是在陆地和海洋因素的收敛中。影响可能是海洋,生态或社会经济。海洋变暖有海洋学的意义包括在杂种季节的改变,弯曲位置的变化以及由于波高和湍流风而引起的与海上活动相关的危险(N'Souvi等,2024)。同时,捕捞收入的不可预测性以及即将来临的气候变化造成的潜在生物多样性损失(Pörtner等人,2023年)分别体现了社会经济和生态经济和生态学的反应。气候变化的其他后果包括沿海水温的变化,降水模式,海平面上升,沿海流量和侵蚀的变化,这显着影响的多样性,分布和丰度,随后影响海洋生物生物系统和生态系统,以及n's sherfculations n s shefivies n's''s''s''''souvient''。例如,海平面的上升通过降低薄壁架的生产力和价值来影响沿海景观和社区的生计(N'Souvi等,2024),从而损害了融化操作的安全性和效率(Bertrand等人,2019年)。此外,降水,暴风雨发生和干旱模式的变化影响了水流量,从而影响了沿海地区的物种运动和招募模式以及盐度水平(Trégarot等,2024)。因此,海温的加速升高(Cheng等,2019),盐度(Cheng等,2020),海平面(Kulp and Strauss,2019),酸性(Cattano等,2018)和脱氧(Kwiatkowski等,2020年),MARRINANT在MARRINANT中,MARRINANT在MARRINANT上,一定的物种和偏移分配,一定的物种和境内迁移。 Venegas等人,2023年),丰度降低(McCauley等,2015),以及生产力的转变(Venegas等,2023),通过改变季节性模式和减少的填充效率和减少的填料(france and france and france and france),从而导致社会经济的影响。
I.引言Flyrock是爆炸启动时远离采矿区的岩石质量。通常考虑的第一个参数是:负担,爆炸孔直径,深度,粉末因子间距,茎,爆炸性材料类型和sub-drill在Flyrock预测期间是可控参数。此外,爆炸工程师无法影响的岩石性能是无法控制的参数,例如压缩间距和岩石的拉伸强度。因此,爆炸工程师必须更改第一个参数,以最大程度地减少flyrock掷距离。设计了各种经验方程,以设想由爆破操作[1],[2]产生的fly架。经验模型是根据flyrock上的几个现场实验的有效参数开发的,即孔直径,爆炸性,茎,负担的密度,弹出材料,粉末因子和孔长度的初始发射速度。因此,这些经验方程的性能预测能力在许多情况下不是很有效[2],[3]。
糖尿病在具有并发症的高收入和低收入国家中越来越普遍(1-3)。它可能导致微血管(肾病,视网膜病和神经病)和宏 - 血管并发症(4-6)。除了管理高血糖外,糖尿病患者还需要临床监测和评估其他危险因素,并管理并发症的潜在预测因素(6-8)。糖尿病神经病的发病率正在增加,即使撒哈拉以南非洲人的现有病例相对降低(9)。糖尿病神经病(DNP)是糖尿病最常见的并发症(10,11)。根据在拉丁美洲进行的系统审查,其患病率在2型DM和1型糖尿病中的患病率在7.0%至34.2%之间的范围为34.5%(6)。尽管大约一半的糖尿病患者无症状对于DNP,但大多数患者都会出现麻木,刺痛,疼痛和无力,导致全世界造成残疾的残疾(12-15)。它会因慢性疼痛,跌倒,肢体截肢和足部溃疡而导致的生活质量。DNP的这些表现进一步导致睡眠障碍,焦虑和抑郁(6,10,15)。糖尿病神经病是低收入和高收入国家的全球医疗保健问题(16,17)。估计每30秒在世界某个地方,由于糖尿病神经病而进行下肢截肢(18)。糖尿病神经病是全球施加社会经济负担和残疾的糖尿病并发症的迅速增长(7,19 - 21)。IT占足迹溃疡的80%,50-60%的非创伤肢体截肢(15)。糖尿病患者中糖尿病神经病的汇总患病率在全球22%至46.5%(6)范围内。在非洲和埃塞俄比亚,它分别在22-66%至52.2 - 53.6%之间,分别患有糖尿病神经病(22-24)。由于诊断迟到,筛查和诊断资源的不足,对血糖的控制不佳,健康支出不足,医疗资源短缺以及缺乏质量糖尿病护理的增加,发展中国家的糖尿病神经病的患病率和发生率很高(20,22)。在黑狮医院进行的一项研究表明,糖尿病神经病是主要的糖尿病并发症,
1生物学,生态与地球科学系,卡拉布里亚大学,意大利列德,2个生物学与环境科学与工程系(BESE),阿卜杜拉国王科学技术大学(KAUST),瑟瓦尔,沙特阿拉伯,瑟瓦尔,阿拉伯,3 sdaia-kaust excell of Date Science and Artopi Intelligence, Thuwal, Saudi Arabia, 4 Institute of Chemical Biology, Ilia State University, TBBI, Georgia, 5 Scientific Direction, IRCCS INRCA, Ancona, Italy, 6 Diabetology Unit, IRCCS INRCA, Ancona, Italy, 7 Unit of Geriatric Medicine, IRCCS Inca, Cosenza, Cosenza, Cosenza,意大利,加拉布里亚大学药学,健康和营养科学系8号,意大利列德尔大学,临床与分子科学系9 IRCCS INRCA,意大利Ancona,12号医学与外科科学系,博洛尼亚大学,博洛尼亚大学,意大利,意大利,13个总方向,IRCCS INRCA,ANCONA,意大利,意大利Ancona,14实验室和精密医学诊所,IRCCS INRCA,IRCCS INRCA,ANCONA,ANCONA,ANCONA,意大利,意大利> >1生物学,生态与地球科学系,卡拉布里亚大学,意大利列德,2个生物学与环境科学与工程系(BESE),阿卜杜拉国王科学技术大学(KAUST),瑟瓦尔,沙特阿拉伯,瑟瓦尔,阿拉伯,3 sdaia-kaust excell of Date Science and Artopi Intelligence, Thuwal, Saudi Arabia, 4 Institute of Chemical Biology, Ilia State University, TBBI, Georgia, 5 Scientific Direction, IRCCS INRCA, Ancona, Italy, 6 Diabetology Unit, IRCCS INRCA, Ancona, Italy, 7 Unit of Geriatric Medicine, IRCCS Inca, Cosenza, Cosenza, Cosenza,意大利,加拉布里亚大学药学,健康和营养科学系8号,意大利列德尔大学,临床与分子科学系9 IRCCS INRCA,意大利Ancona,12号医学与外科科学系,博洛尼亚大学,博洛尼亚大学,意大利,意大利,13个总方向,IRCCS INRCA,ANCONA,意大利,意大利Ancona,14实验室和精密医学诊所,IRCCS INRCA,IRCCS INRCA,ANCONA,ANCONA,ANCONA,意大利,意大利> >
1 因斯布鲁克大学药学/生药学研究所、因斯布鲁克分子生物科学中心 (CMBI),Innrain 80 / 82, 6020 因斯布鲁克,奥地利; F.Mayr@uibk.ac.at (FM); Veronika.Temml@pmu.ac.at (佛蒙特州); birgit.waltenberger@uibk.ac.at (BW); Stefan.Schwaiger@uibk.ac.at (SS); hermann.stuppner@uibk.ac.at (HS) 2 研究单位分子内分泌学和代谢,亥姆霍兹中心慕尼黑,Ingolstädter Landstraße 1, 85764 Neuherberg,德国; gabriele.moeller@helmholtz-muenchen.de(总经理); adamski@helmholtz-muenchen.de (JA) 3 格赖夫斯瓦尔德大学药学院制药/药物化学系,Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald,德国;ulrike.garscha@uni-greifswald.de (UG);jana.fischer@uni-greifswald.de (JF) 4 伯尔尼大学儿童医院儿科内分泌、糖尿病和代谢科,Freiburgstrasse 15, 3010 Bern,瑞士;patrirodcas@gmail.com (PRC); amit.pandey@dbmr.unibe.ch (AVP) 5 伯尔尼大学生物医学研究系,Freiburgstrasse 15, 3010 伯尔尼,瑞士 6 巴塞尔大学药学系分子与系统毒理学分部,Klingelbergstrasse 50, 4056 巴塞尔,瑞士;silvia.inderbinen@unibas.ch (SGI);alex.odermatt@unibas.ch (AO) 7 萨尔州亥姆霍兹药物研究所 (HIPS),药物设计和优化系,E8.1 校区,66123 萨尔布吕肯,德国; rolf.hartmann@helmholtz-hzi.de 8 萨尔大学,制药和药物化学,E8.1 校区,66123 萨尔布吕肯,德国 9 海德堡大学,药学和分子生物技术研究所 (IPMB),药物化学,Im Neuenheimer Feld 364,69120 海德堡,德国;christian.gege@web.de 10 埃德蒙马赫基金会 (FEM) 研究与创新中心,Via Mach 1,38010 San Michele all'Adige,意大利;stefan.martens@fmach.it 11 耶拿弗里德里希席勒大学药学研究所制药/药物化学系,Philosophenweg 14,07743 耶拿,德国; oliver.werz@uni-jena.de 12 遗传学实验学校,慕尼黑工业大学,Emil-Erlenmeyer-Forum 5, 85356 Freising-Weihenstephan, 德国 13 新加坡国立大学杨潞龄医学院生物化学系,8 Medical Drive, Singapore 117597,新加坡 14 药学研究所,萨尔茨堡帕拉塞尔苏斯医科大学制药和药物化学系,Strubergasse 21, 5020 Salzburg, Austria 15 药学/药物化学研究所,因斯布鲁克分子生物科学中心 (CMBI),因斯布鲁克大学,Innrain 80 / 82, 6020 Innsbruck, Austria * 通讯作者:daniela.schuster@pmu.ac.at;电话:+43-699-14420025
i naveenrangasamy b then削弱了我在我在我的指导下,题为“使用python中使用数据科学的糖尿病预测”。在Sathyabama科学技术学院,一部分履行了
心力衰竭(HF)是一种心血管疾病(CVD),是一种普遍的疾病,可能导致危险情况。每年,全球大约有1790万患者死于这种疾病。对于心脏专家和外科医生来说,准确预测心力衰竭是具有挑战性的。幸运的是,可以使用分类和预测模型,可以使用医疗数据有效地帮助医疗领域。这项研究的目的是通过预测由11个患者属性的五组数据组成的Kaggle数据集来提高心力衰竭预测的准确性。使用多种机器学习方法来了解数据和医学数据库中心力衰竭的可能性。结果和比较表明,预测心力衰竭的精度得分明显提高。将此模型整合到医疗系统中将有助于帮助医生预测患者心脏病的预测
ErbB 受体家族(包括 EGFR 和 HER2)在细胞生长和存活中起着至关重要的作用,并与乳腺癌和肺癌等各种癌症的进展有关。在本研究中,我们开发了一个深度学习模型,使用基于 SMILES 表示的分子指纹来预测 ErbB 抑制剂的结合亲和力。每种 ErbB 抑制剂的 SMILES 表示均来自 ChEMBL 数据库。我们首先从 SMILES 字符串生成 Morgan 指纹,并应用 AutoDock Vina 对接来计算结合亲和力值。根据结合亲和力过滤数据集后,我们训练了一个深度神经网络 (DNN) 模型来根据分子指纹预测结合亲和力值。该模型取得了显著的性能,训练集上的均方误差 (MSE) 为 0.2591,平均绝对误差 (MAE) 为 0.3658,R 平方 (R²) 值为 0.9389。尽管在测试集上性能略有下降(R² = 0.7731),但该模型仍然表现出强大的泛化能力。这些结果表明深度学习方法对于预测 ErbB 抑制剂的结合亲和力非常有效,为虚拟筛选和药物发现提供了宝贵的工具。
近来,使用机器学习模型和技术预测经济变量的情况越来越多,其动机是它们比线性模型具有更好的性能。尽管线性模型具有相当大的解释能力的优势,但近年来,人们加大了努力,使机器学习模型更具解释性。本文进行了测试,以确定基于机器学习算法的模型在预测非正规经济规模方面是否比线性模型具有更好的性能。本文还探讨了机器学习模型检测到的最重要的这种规模的决定因素是否与文献中基于传统线性模型检测到的因素相同。为此,从 2004 年到 2014 年,收集并处理了 122 个国家的观测数据。接下来,使用 11 个模型(四个线性模型和七个基于机器学习算法的模型)来预测这些国家非正规经济的规模。使用 Shapley 值计算了预测变量在确定机器学习算法产生的结果中的相对重要性。结果表明:(i)基于机器学习算法的模型比线性模型具有更好的预测性能;(ii)通过 Shapley 值检测到的主要决定因素与文献中使用传统线性模型检测到的主要决定因素一致。
摘要 - 全球计算机视觉的加速发展对水果收获的估计产生了重大影响,从而提高了效率并大大减少了食物浪费。此外,这项技术在农业部门面临着显着的抵抗力和缺乏知识。本综述的目的是分析人工视力方法在预测高茎果的收获时。因此,应用了非实验性描述性设计,属于无荟萃分析的系统综述。基于定义的标准(包含和排除),从电子数据库Scopus,Scielo和Redalyc中选择了26篇开放访问文章,这些文章涉及使用VA来预测高茎水果的收获。的发现表明,大多数研究使用近红外(NIR)光谱和RGB图像处理来估计收获,分别达到95%(柑橘类水果)和75%(苹果)的平均准确性。此外,使用RGB和YOLOV3图像传感器的无人机的使用使得获得大于90%的精确度成为可能,从而实现了收获前4到6个月之间的预测。得出结论是,使用最常用的VA方法是RGB图像传感器,光谱法(NIR),无人驾驶飞机(UAV)和Yolov3,它们在预测高茎果实的成熟方面的准确性大于75%。该方法的选择将主要取决于您是要分析果实的内部还是外部部分,因此,重要的是要识别高茎果实在其生长阶段的色素沉着的变化。
