在 Andrew Forrest 博士的领导下,FMG 制定了全国领先的脱碳路线图,目标是到 2030 年实现净零运营排放,并制定了世界领先的完整价值链目标,即到 2040 年实现净零排放(范围 1-3)。FMG 已承诺将其税后利润的 10% 通过 Fortescue Future Industries (FFI) 为可再生能源增长提供资金,另外 10% 则用于其他商品的增长机会。Fortescue 的资本配置与公司业绩挂钩,每年为可再生能源提供约 6.2 亿美元的稳定财务基础。到 2030 年,FMG 计划投资 62 亿美元用于引领澳大利亚的脱碳。35
1. 将在本办公室工作中了解到的所有信息视为机密信息,并严格保密。ii. 不以任何方式向任何人出售、交易、发布或以其他方式披露,包括以实物、硬拷贝、数字或电子格式复制。在聘用期间和聘用后,对此类机密信息保持信任和信心。iv. 在与 MDoNEk 合作期间,不从事任何其他与我对 MDoNER 的义务相冲突的工作/职业/咨询或任何其他活动。v. 遵守 MOONER 发布的数据安全政策和相关指南。vi. 在聘用期间,不得在任何方面和任何阶段采取任何腐败行为。-
扩散模型在建模复合物和多模态轨迹分布方面表现出色,以进行决策和控制。最近提出了奖励级别指导的denoising,以生成轨迹,从而最大程度地提高了可差异的奖励函数,又是扩散模型捕获的数据分布下的可能性。奖励级别指导的denoisising需要适合清洁和噪声样本的可区分奖励功能,从而限制了其作为一般轨迹优化器的应用。在本文中,我们提出了扩散-ES,一种将无梯度优化与轨迹deNoising结合起来的方法,以优化黑框非差异性目标,同时留在数据管理中。扩散-ES样品在进化过程中的轨迹 - 从扩散模型中搜索,并使用黑框奖励函数得分。它使用截断的扩散过程突变高得分轨迹,该过程应用了少量的no弱和降解步骤,从而可以更有效地探索解决方案空间。我们表明,扩散-ES在Nuplan上实现了最先进的表现,Nuplan是一个已建立的闭环计划基准,用于自动驾驶。扩散-ES的表现优于现有的基于抽样的计划者,反应性确定性或基于扩散的策略以及奖励梯度指导。此外,我们表明,与先前的指导方法不同,我们的方法可以优化由少数弹药LLM提示产生的非差异性语言形状奖励功能。这使我们能够解决最困难的NUPLAN场景,这些方案超出了现有的传统优化方法和驾驶策略的能力。在以遵循指示的人类老师的指导下,我们的方法可以产生新颖的,高度复杂的行为,例如训练数据中不存在的积极的车道编织。1
在量子计算机上可验证的较低复杂度。然而,量子电路 (QC) 的 QIP 体现仍不清楚,更不用说对 QIP 电路的 (彻底) 评估,特别是在 NISQ 时代的实际环境中,通过混合量子经典管道将 QIP 应用于 ML。在本文中,我们从头开始精心设计 QIP 电路,其复杂性与理论复杂性一致。为了使模拟在经典计算机上易于处理,特别是当它集成在基于梯度的混合 ML 管道中时,我们进一步设计了一种高效的模拟方案,直接模拟输出状态。实验表明,与之前的电路模拟器相比,该方案将模拟速度提高了 68k 倍以上。这使我们能够对典型的机器学习任务进行实证评估,从通过神经网络的监督和自监督学习到 K 均值聚类。结果表明,在量子比特足够的情况下,典型量子机制带来的计算误差一般不会对最终的数值结果产生太大影响。然而,某些任务(例如 K-Means 中的排序)可能对量子噪声更加敏感。
我们描述了一种分析复杂微生物种群遗传多样性的新型分子方法。该技术基于通过变性梯度凝胶电泳 (DGGE) 分离编码 16S rRNA 的聚合酶链式反应扩增基因片段,这些片段的长度相同。对不同微生物群落的 DGGE 分析表明,分离模式中存在多达 10 个可区分的条带,这些条带很可能来自构成这些种群的许多不同物种,从而生成了种群的 DGGE 图谱。我们表明,可以识别仅占总种群 1% 的成分。使用针对硫酸盐还原菌 16S rRNA 的 V3 区特异性的寡核苷酸探针,可以通过杂交分析识别某些微生物种群的特定 DNA 片段。对在有氧条件下生长的细菌生物膜的基因组 DNA 进行分析表明,尽管硫酸盐还原菌具有厌氧性,但它们仍存在于这种环境中。我们获得的结果表明,该技术将有助于我们了解未知微生物种群的遗传多样性。
使命宣言贝德福德高中的使命是对所有学生进行培养,民主,具有挑战性和包容性环境的教育。贝德福德高中与父母和社区合作,帮助学生获得知识,并发展技能和智力好奇心,成为独立和自给自足的成年人,他们将在全球社区中负责任地做出贡献。通过为学生提供创造意义并在各种环境中发展理解的机会,贝德福德高中使学生准备成长和采取一种良好的,创造性的,富有的,道德和富有同情心的方式。翻译支持:如果您需要研究计划的帮助或翻译服务,请与ESL计划管理员Hilary Nichols联系(781)275-7706 Ext。4862
Smid 等人(2020 年)进行了一项系统评价,以表征贝叶斯和频率估计在小样本量 SEM 中的表现。在手动筛选 5050 项研究后,仅选定 27 项来回答他们的研究问题。进行系统评价需要付出巨大的筛选努力。这种筛选工作使证据综合成为一项极具挑战性的任务。开源 AI 辅助筛选工具可以潜在地减少工作量:系统评价的主动学习(ASReview;van de Schoot 等人,2020 年)。在 ASReview 中,研究人员与主动学习模型交互筛选摘要。根据研究人员的决策(相关与不相关),该模型会迭代更新其对剩余摘要的相关性预测。通过优先考虑最有可能相关的文章(即基于确定性的主动学习),ASReview 最大限度地减少了研究人员需要筛选的文章数量,同时仍能识别出大多数相关文章。手动筛选和自动优先排序出版物的过程会产生一组相关出版物。作为一个例子,ASReview 被应用于 Smid 等人(2020 年)确定的 5050 篇研究的全部集合。理想的表现被定义为最大限度地识别 Smid 等人最初确定的 27 篇相关文章,同时最大限度地减少研究人员需要筛选的文章数量。相关性预测由主动学习模型进行,该模型使用朴素贝叶斯或逻辑回归作为分类器。对于第一个预测,ASReview 需要一些示例文章。对每个分类器应用了 27 次 ASReview,使用每篇相关文章作为示例文章一次,并与一篇随机的不相关文章配对。如图 1 所示,贝叶斯和逻辑回归模型都发现超过 80%
摘要 蛋白质的正确折叠对于维持功能性活细胞至关重要。因此,蛋白质的错误折叠和聚集与多种疾病有关,其中非天然分子间相互作用形成具有低自由能的大型高度有序的淀粉样蛋白聚集体。一个例子是阿尔茨海默病 (AD),其中淀粉样蛋白-β (Aβ) 肽聚集成淀粉样蛋白原纤维,这些原纤维在 AD 患者的大脑中沉积为神经斑块。淀粉样蛋白原纤维的成核是通过形成较小的成核前簇(即所谓的低聚物)进行的,这些低聚物被认为具有特别的毒性,因此在 AD 病理学中具有潜在重要性。Aβ 聚集的详细分子机制知识对于设计针对这些过程的 AD 治疗非常重要。然而,由于低聚物物种的丰度低且多分散性高,因此很难通过实验研究它们。本文使用自下而上的生物物理学在受控的体外条件下研究了 Aβ 低聚物。主要使用天然离子迁移质谱法研究高纯度重组 Aβ 肽,以监测水溶液中低聚物的自发形成。质谱法能够分辨单个低聚物状态,而离子迁移率则提供低分辨率结构信息。这与其它生物物理技术以及理论建模相辅相成。还研究了调节内在因素(如肽长度和序列)或外在因素(如化学环境)的低聚物。研究了与两个重要的生物相互作用伙伴的相互作用:伴侣蛋白和细胞膜。我们展示了 Aβ 低聚物如何组装并形成可能与继续生长为淀粉样蛋白原纤维有关的延伸结构。我们还展示了不同的淀粉样蛋白伴侣蛋白如何与不断增长的聚集体相互作用,从而改变和延迟聚集过程。这些相互作用取决于伴侣和客户肽中的特定序列基序。另一方面,膜模拟胶束能够稳定 Aβ 寡聚体的球状致密形式,并抑制形成淀粉样纤维的延伸结构的形成。这可能有助于体内毒性物质的富集。与膜模拟系统的相互作用被证实高度依赖于 Aβ 肽异构体和膜环境的特性,例如头部电荷。还展示了如何添加设计的小肽结构来抑制膜环境中 Aβ 寡聚体的形成。
