摘要:石油产品是重要的环境污染物。这项研究旨在分离能够在含汽油和柴油燃料的培养基上生长的微生物。微生物。细菌分离株进行了表征和测试,含有10%至100%汽油和柴油燃料的浓度,以及50/50%和25/25/50%的组合(汽油/柴油/柴油/Mueller Hinton Broth)。结果表明,微生物分离株属于假单胞菌,芽孢杆菌,葡萄球菌,微球菌,黄酮细菌,静脉细菌,青霉菌,汉斯福德菌和替代性。假单胞菌属。和芽孢杆菌属。表明,两种产品的浓度都具有80%的浓度。但是,在该浓度和两种混合物上都没有发现生长。在整个研究中,已经表明,使用选择性筛选方法来对污染物生长的微生物可以带来生物修复的重要优势。
1。牙科学院,Thi-Qar大学,Thi-qar,64001,伊拉克2。 Thi-Qar大学理学院化学系,Thi-Qar,64001,伊拉克3。 工程学院,Thi-Qar大学,Thi-Qar,64001,伊拉克 *通讯作者的电子邮件:assa.sayar@sci.utq.utq.utq.utq.utq.utq.iq Abstract Biododiesel,来自可再生资源的摘要生物柴油是支持能源安全的可能替代方案之一。 这项研究旨在通过直接式静止化从卵藻和鸭藻植物中生产生物柴油。 为所考虑的鸭植物取了5 g的干生物量,并将藻类浸入50 mL甲醇中:盐酸:氯仿:氯仿(10:1:1 v/v/v/v)溶剂溶剂以提取脂肪酸甲基酯(FAME)。 使用FT-IR和GC-MAS光谱法进行提取的材料进行表征。 准备了准备的样品,以鉴定化合物,特别是脂质。 结果表明,在形成的酯(生物柴油)中存在饱和和不饱和脂肪酸。 在衍生自鸭植物的生物柴油中鉴定出的饱和脂肪酸和不饱和脂肪酸分别为24.19%和20.34%,藻类分别为19.92%和17.2%。 这些结果表明,从这些类型的生物量中产生生物柴油的潜力很高,这可以为能源供应提供另一种途径。 关键字:生物柴油,odogonium,Duckweed,Direct Transesterification,脂肪酸甲基酯。 文章类型:研究文章。 2020a)。 可再生资源可以提供可行的途径来解决常规能源缺陷(Sayer等人牙科学院,Thi-Qar大学,Thi-qar,64001,伊拉克2。Thi-Qar大学理学院化学系,Thi-Qar,64001,伊拉克3。 工程学院,Thi-Qar大学,Thi-Qar,64001,伊拉克 *通讯作者的电子邮件:assa.sayar@sci.utq.utq.utq.utq.utq.utq.iq Abstract Biododiesel,来自可再生资源的摘要生物柴油是支持能源安全的可能替代方案之一。 这项研究旨在通过直接式静止化从卵藻和鸭藻植物中生产生物柴油。 为所考虑的鸭植物取了5 g的干生物量,并将藻类浸入50 mL甲醇中:盐酸:氯仿:氯仿(10:1:1 v/v/v/v)溶剂溶剂以提取脂肪酸甲基酯(FAME)。 使用FT-IR和GC-MAS光谱法进行提取的材料进行表征。 准备了准备的样品,以鉴定化合物,特别是脂质。 结果表明,在形成的酯(生物柴油)中存在饱和和不饱和脂肪酸。 在衍生自鸭植物的生物柴油中鉴定出的饱和脂肪酸和不饱和脂肪酸分别为24.19%和20.34%,藻类分别为19.92%和17.2%。 这些结果表明,从这些类型的生物量中产生生物柴油的潜力很高,这可以为能源供应提供另一种途径。 关键字:生物柴油,odogonium,Duckweed,Direct Transesterification,脂肪酸甲基酯。 文章类型:研究文章。 2020a)。 可再生资源可以提供可行的途径来解决常规能源缺陷(Sayer等人Thi-Qar大学理学院化学系,Thi-Qar,64001,伊拉克3。工程学院,Thi-Qar大学,Thi-Qar,64001,伊拉克 *通讯作者的电子邮件:assa.sayar@sci.utq.utq.utq.utq.utq.utq.iq Abstract Biododiesel,来自可再生资源的摘要生物柴油是支持能源安全的可能替代方案之一。 这项研究旨在通过直接式静止化从卵藻和鸭藻植物中生产生物柴油。 为所考虑的鸭植物取了5 g的干生物量,并将藻类浸入50 mL甲醇中:盐酸:氯仿:氯仿(10:1:1 v/v/v/v)溶剂溶剂以提取脂肪酸甲基酯(FAME)。 使用FT-IR和GC-MAS光谱法进行提取的材料进行表征。 准备了准备的样品,以鉴定化合物,特别是脂质。 结果表明,在形成的酯(生物柴油)中存在饱和和不饱和脂肪酸。 在衍生自鸭植物的生物柴油中鉴定出的饱和脂肪酸和不饱和脂肪酸分别为24.19%和20.34%,藻类分别为19.92%和17.2%。 这些结果表明,从这些类型的生物量中产生生物柴油的潜力很高,这可以为能源供应提供另一种途径。 关键字:生物柴油,odogonium,Duckweed,Direct Transesterification,脂肪酸甲基酯。 文章类型:研究文章。 2020a)。 可再生资源可以提供可行的途径来解决常规能源缺陷(Sayer等人工程学院,Thi-Qar大学,Thi-Qar,64001,伊拉克 *通讯作者的电子邮件:assa.sayar@sci.utq.utq.utq.utq.utq.utq.iq Abstract Biododiesel,来自可再生资源的摘要生物柴油是支持能源安全的可能替代方案之一。这项研究旨在通过直接式静止化从卵藻和鸭藻植物中生产生物柴油。为所考虑的鸭植物取了5 g的干生物量,并将藻类浸入50 mL甲醇中:盐酸:氯仿:氯仿(10:1:1 v/v/v/v)溶剂溶剂以提取脂肪酸甲基酯(FAME)。使用FT-IR和GC-MAS光谱法进行提取的材料进行表征。准备了准备的样品,以鉴定化合物,特别是脂质。结果表明,在形成的酯(生物柴油)中存在饱和和不饱和脂肪酸。在衍生自鸭植物的生物柴油中鉴定出的饱和脂肪酸和不饱和脂肪酸分别为24.19%和20.34%,藻类分别为19.92%和17.2%。这些结果表明,从这些类型的生物量中产生生物柴油的潜力很高,这可以为能源供应提供另一种途径。关键字:生物柴油,odogonium,Duckweed,Direct Transesterification,脂肪酸甲基酯。文章类型:研究文章。2020a)。可再生资源可以提供可行的途径来解决常规能源缺陷(Sayer等人引言能源需求的持续增加以及政治冲突,污染损害和全球变暖的增加造成了压力,以寻找替代煤炭,石油和石油衍生品代表的传统能源资源的替代方案。此外,耗尽了常规燃料(化石燃料)和强迫研究以调查替代能源以节省全球经济和环境(Ethaib等人2020)。生物燃料已成为有希望的替代能源。是第一代生物燃料,生物乙醇和生物柴油的是由食品原料产生的,例如淀粉,糖和从玉米,小麦和大豆等农作物植物中得出的油(Neto等人。 2019)。 使用食物作物原料来产生生物燃料,触发辩论以在燃料和食物之间进行选择(Alaswad等人。 2015)。 此外,要创造足够的生物质,粮食作物原料需要巨大的农业区域,这可能导致土地破坏,生物多样性损失,栖息地损失,水耗尽和空气污染(Neto等人(Neto等人) 2019)。 因此,该研究指示使用草,木材,木质纤维素生物量和其他有机废物生产非食品作物的生物燃料,这被称为第二代生物燃料。 木质纤维素材料的复杂结构需要一个预处理过程,以便在水解过程中有效转化(Ethaib等人 2020b)。 已经应用了各种各样的预处理过程。 但是,大多数这些过程都遇到了技术困难,最终反映了最终产品的成本(Ethaib等人是由食品原料产生的,例如淀粉,糖和从玉米,小麦和大豆等农作物植物中得出的油(Neto等人。2019)。使用食物作物原料来产生生物燃料,触发辩论以在燃料和食物之间进行选择(Alaswad等人。2015)。此外,要创造足够的生物质,粮食作物原料需要巨大的农业区域,这可能导致土地破坏,生物多样性损失,栖息地损失,水耗尽和空气污染(Neto等人(Neto等人)2019)。因此,该研究指示使用草,木材,木质纤维素生物量和其他有机废物生产非食品作物的生物燃料,这被称为第二代生物燃料。木质纤维素材料的复杂结构需要一个预处理过程,以便在水解过程中有效转化(Ethaib等人2020b)。已经应用了各种各样的预处理过程。但是,大多数这些过程都遇到了技术困难,最终反映了最终产品的成本(Ethaib等人2020c)。在寻找可行且具有成本效益的替代方案时,藻类和藻类衍生的生物质得到了相当大的关注或生产改进的生物燃料(Gajraj等人)2018)。使用藻类
摘要:数十年来,液体燃料一直是内燃机(ICE)的主要能源。但是,锂离子电池(LIB)已取代了环保车辆的冰,并减少了化石燃料的依赖性。本文重点介绍了电池热管理系统(BTM)的比较分析,以保持工作温度在15-35℃的范围内,并防止热失控和高温梯度,从而增加LIB生命周期和性能。建议的方法是将生物柴油用作发动机饲料和冷却液。使用ANSYS-FLUENT CFD软件工具模拟3S2P LIB模块。将四个选择性介电生物柴油用作冷却剂,即棕榈,卡兰加,贾特罗帕和玛哈油。与BTMS(主要是空气和3M NOVEC)中的常规冷却剂相比,生物柴油燃料已被证明是将LIB温度保持在最佳工作范围内的冷却剂。例如,与3M NOVEC相比,使用棕榈生物柴油可以轻巧的BTM轻巧43%,并且同样保持BTMS性能。
经济影响(十亿美元)23.23 27.00 31.40 49.03油籽生产7.41 8.55 9.88 15.20动物加工和废物油脂递送N.A.N.A. N.A. N.A. Local oilseed delivery 0.18 0.20 0.23 0.33 Elevation 0.25 0.29 0.33 0.49 Oilseed crush 4.97 5.77 6.71 10.47 Feedstock delivery by barge 0.03 0.04 0.05 0.08 Feedstock delivery by rail 0.10 0.13 0.16 0.28 Biodiesel processing, with feedstock collection 9.57 11.23 13.17 20.93 Rail deliveries of domestic biodiesel 0.43 0.50 0.57 0.87 Rail deliveries of glycerin 0.05 0.06 0.07 0.11 Rail deliveries of imported biodiesel 0.01 0.01 0.01 0.02 Rail deliveries of exported biodiesel 0.02 0.02 0.02 0.01 Trucking domestic biodiesel to sale 0.13 0.14 0.14 0.16 Trucking imports to sale 0.03 0.04 0.04 0.06进口端口活动0.01 0.01 0.02 0.02出口端口活动0.00 0.00 0.00 0.00N.A.N.A. N.A. Local oilseed delivery 0.18 0.20 0.23 0.33 Elevation 0.25 0.29 0.33 0.49 Oilseed crush 4.97 5.77 6.71 10.47 Feedstock delivery by barge 0.03 0.04 0.05 0.08 Feedstock delivery by rail 0.10 0.13 0.16 0.28 Biodiesel processing, with feedstock collection 9.57 11.23 13.17 20.93 Rail deliveries of domestic biodiesel 0.43 0.50 0.57 0.87 Rail deliveries of glycerin 0.05 0.06 0.07 0.11 Rail deliveries of imported biodiesel 0.01 0.01 0.01 0.02 Rail deliveries of exported biodiesel 0.02 0.02 0.02 0.01 Trucking domestic biodiesel to sale 0.13 0.14 0.14 0.16 Trucking imports to sale 0.03 0.04 0.04 0.06进口端口活动0.01 0.01 0.02 0.02出口端口活动0.00 0.00 0.00 0.00N.A.N.A. Local oilseed delivery 0.18 0.20 0.23 0.33 Elevation 0.25 0.29 0.33 0.49 Oilseed crush 4.97 5.77 6.71 10.47 Feedstock delivery by barge 0.03 0.04 0.05 0.08 Feedstock delivery by rail 0.10 0.13 0.16 0.28 Biodiesel processing, with feedstock collection 9.57 11.23 13.17 20.93 Rail deliveries of domestic biodiesel 0.43 0.50 0.57 0.87 Rail deliveries of glycerin 0.05 0.06 0.07 0.11 Rail deliveries of imported biodiesel 0.01 0.01 0.01 0.02 Rail deliveries of exported biodiesel 0.02 0.02 0.02 0.01 Trucking domestic biodiesel to sale 0.13 0.14 0.14 0.16 Trucking imports to sale 0.03 0.04 0.04 0.06进口端口活动0.01 0.01 0.02 0.02出口端口活动0.00 0.00 0.00 0.00N.A.Local oilseed delivery 0.18 0.20 0.23 0.33 Elevation 0.25 0.29 0.33 0.49 Oilseed crush 4.97 5.77 6.71 10.47 Feedstock delivery by barge 0.03 0.04 0.05 0.08 Feedstock delivery by rail 0.10 0.13 0.16 0.28 Biodiesel processing, with feedstock collection 9.57 11.23 13.17 20.93 Rail deliveries of domestic biodiesel 0.43 0.50 0.57 0.87 Rail deliveries of glycerin 0.05 0.06 0.07 0.11 Rail deliveries of imported biodiesel 0.01 0.01 0.01 0.02 Rail deliveries of exported biodiesel 0.02 0.02 0.02 0.01 Trucking domestic biodiesel to sale 0.13 0.14 0.14 0.16 Trucking imports to sale 0.03 0.04 0.04 0.06进口端口活动0.01 0.01 0.02 0.02出口端口活动0.00 0.00 0.00 0.00
a 马来西亚马六甲技术大学机械工程学院,Hang Tuah Jaya, 76100 Durian Tunggal,马六甲,马来西亚 b 机械工程系,PA 工程学院(隶属于 Visvesvaraya 科技大学,Belagavi),Mangaluru 574153,印度 c 机械工程系,工程技术大学,新校区拉合尔,巴基斯坦 d HUTECH 大学工程学院,越南胡志明市 e 机械工程系,Mepco Schlenk 工程学院,Sivakasi,印度 f 机械工程,孔敬大学工程学院,孔敬,泰国 g 替代能源研究与开发中心,孔敬大学,孔敬,泰国 h 航空工程系,Sathyabama 科学技术学院,印度 i 绿色技术中心,悉尼科技大学工程与 IT 学院,悉尼,新南威尔士州 2007,澳大利亚 j 机械工程系,技术学院,Glocal 大学, Delhi-Yamunotri Marg, SH-57, Mirzapur Pole, Saharanpur District, Uttar Pradesh, 247121, India k 班哈大学本哈工程学院机械工程系,Benha 13512,埃及 l 江苏大学能源研究所,镇江市学府路 301 号,邮编 212013,中国 m 印度尼西亚桑波那大学机械工程研究项目 n 工程与计算机学院Science Universitas Buana Perjuangan Karawang Teluk Jambe, Karawang 41361, Indonesia o 脂质工程与应用研究中心 (CLEAR), Ibnu Sina 科学与工业研究所, UTM, 81310 Johor Bahru, Malaysia
摘要:沙特阿拉伯的农村地区没有接入国家电网,电力主要由柴油发电机供电。这不仅是一种不可再生能源,而且还会造成环境破坏,可能危害人体健康。为了缓解这一问题,提出了与太阳能光伏系统的集成。基于沙特阿拉伯延布的气候数据,设计、分析和优化了光伏柴油混合系统 (PvDHS)。电力可再生能源混合优化模型 (HOMER) 软件使用测量的当地太阳辐射和气候数据,使用不同的系统组件和配置来优化设计,以获得最佳的能源成本。对于平均每日 10.5 kWh 的电力需求,由 3 kW 光伏系统、2 kW 柴油发动机、1 kW 转换器和 14 kWh 电池组成的系统被确定为最具成本效益的。该系统的总净现值 (NPC) 为 17,800 美元,比仅使用柴油的系统的成本 35,770 美元降低了 50%。PvDHS 的有用电能为 0.36 美元/千瓦时,而仅使用柴油的系统的能量成本 (COE) 为 0.72 美元/千瓦时。该系统预计在 2.8 年内收回成本,并且每年减少 8110 千克的二氧化碳排放量。
摘要4几乎所有在美国的机车都由由柴油5发电机提供动力的电动驱动器推动,空气污染每6年就会造成1,000多人的早期死亡。电池技术的急剧改进,加上廉价可再生电力7打开电池电力导轨的可能性。鉴于机车已经具有电动驱动器,8将其转换为电池电动电池,主要需要电池车,该电池可以直接连接到传动系统。我们检查了电池电力电池货运导轨部门的案例,10发现一辆重型电池车可以为450英里的典型机车供电,这是美国货运火车旅行的11个平均每日距离的三倍。我们发现,电池电力火车可以使用12台柴油火车以6美分/千瓦时的电力充电成本实现成本奇偶性。我们13说明了如何使用批发电价来实现这些成本。将14个机队转换为电池电力电池将删除3700万吨二氧化碳,并在20年内节省15亿美元的总部门成本,同时在极端事件中引入可解决位置特异性网格约束的238 GWH。17 18 19 20 21
Senator Maria Cantwell, Chair Senator Roger Wicker, Ranking Member Senate Committee on Commerce, Science and Transportation Senator Joe Manchin, Chair Senator John Barrasso, Ranking Member Senate Committee on Energy and Natural Resources Senator Tom Carper, Chair Senator Shelly Moore-Capito, Ranking Member Senate Committee on Environment and Public Works August 26, 2021 Dear Senators: The California Air Resources Board (CARB) and the California Energy Commission (CEC)要求您考虑一个问题,该问题正在成为加利福尼亚保护公共卫生目标的障碍,尤其是在我们最负担重大的社区中,并减少对石油燃料的依赖。碳水化合物的低碳燃料标准1激励源自可再生和可持续的原料的液化燃料的生产和使用,目的是减少运输部门的温室气体排放。可再生柴油很重要,为减少温室气体的州和国家努力做出了贡献,并支持传统的石油公司过渡到清洁燃料。在低碳燃料标准的灵活性下,可再生柴油的生产商可以位于加利福尼亚州或州外。联邦法规要求将燃料分配器标记,以告知最终用户与汽油和柴油燃料混合的生物燃料类型。2几乎所有这些规定都要求标签来指定可以在汽油或柴油燃料中包含的生物燃料范围。3
在农村,尤其是无法访问网格连接的农村,尤其是偏远地区可用的电力在伊拉克等发展中国家仍然是一个挑战。目前,世界上约80%的能源需求是由化石燃料提供的,化石燃料是污染的主要来源。然而,减少全球化石燃料资源,价格上涨和能源需求的增加是显着最大程度地降低对化石燃料的依赖的充分理由。本研究讨论了位于伊拉克边境附近伊拉克东南部的Zerbattiya的电气需求。问题在于,伊拉克的许多偏远地区在过去几年中随机扩展,但生成站保持不变。向这些地区传递电力的可能性是耗时且昂贵的。该系统的组件是太阳能电池板(PV),风力涡轮机(WT),柴油发电机(DG),电池(BT)和转换器,并根据兼容性与七种不同的情况集成。风和柴油(WT-DG)的能源成本(COE)最低,并且在所有研究的病例中的净现在成本(NPC)值是Zerbattiya的最具成本效益的设计。结果表明,NWT(39),NDG(5),NBT(351),NCONV(88),COE(0.123 US $/kWh),NPC(292万美元)和IC(US $ 944,655)。
当前的微电网设计和评估忽略了组件的可靠性,从而导致了在岛时预测微电网性能的重大错误。现有关于混合微电网的生命周期成本研究(结合了光伏(PV),电池存储和网络紧急柴油发电机)也没有确定所有潜在的经济机会。通过依赖PV和电池,零售账单节省以及需求响应和批发市场收入来减少紧急柴油发电机的数量非常重要。本文提供了一种新的统计方法,该方法可以计算分布式能量可靠性和可变性对微电网性能的影响,以及对优化平台REOPT的新颖使用,以探索多种成本节省和收入流。我们研究了加利福尼亚,马里兰州和新墨西哥州微电网的影响,并表明混合微电网比仅柴油系统更具有弹性和成本效率的解决方案。在现实条件下,混合微电网在岛屿上可以提供更高的系统可靠性,并且在多个市场条件下的生命周期成本低于传统的基于柴油发电机的系统。混合系统的性能提高对过去20年中太阳辐照度所经历的状况有弹性,并且在飓风过后,绩效几乎没有降解。与仅柴油的微电网相比,可节省的成本可提供更弹性的备用电源系统。新墨西哥州混合微电网的净现在成本比仅柴油微电网低19%,而马里兰州的净成本却低35%。在加利福尼亚州,混合微电网的净现在成本为负,因为与仅柴油微电网不同,混合微电网的生命周期成本低于没有微电网的电力成本。