实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。
简介:在克里唑替尼和alectinib中,已批准了几种肿瘤淋巴瘤激酶(ALK) - 抑制剂(ALKI)(ALKI)用于治疗ALK转移的晚期或转移性非小细胞肺癌(NSCLC)。这迫使医生根据肿瘤的遗传学作用选择最合适的化合物,但也要在毒性和潜在的辅助处理方面选择。可能将靶向疗法与免疫疗法结合或之后,这强调了获得有关这些抑制剂潜在免疫调节作用的详细知识的重要性。我们在这里的目的是1。)确定ALKI是否对人类树突细胞(DC)表现出免疫抑制作用,作为抗原特异性免疫的重要介体和2。)剖析这种免疫抑制在ALKI之间是否有所不同。
确认性评估:确认性评估旨在提供有关绩效差异的确凿证据。与科学实验一样,它们必须提出明确的假设以供检验,并且必须精心设计,以尽量减少得出错误结论的风险。在评估和报告少数群体的系统绩效时,在只有少数额外因素可能影响系统绩效的情况下,确认性评估是最可行的。
结果:包括一些相关研究。结果表明,体育活动显着改善了ASD儿童的执行功能(抑制性控制,认知能力和工作记忆)的所有三个维度。认知灵活性和抑制性控制的改善都达到了中等效应的大小。然而,抑制控制的改善要比认知能力的改善要好,而工作记忆的改善未达到培养基水平。迷你篮球可有效改善抑制性控制和认知能力,但没有工作记忆。ping pong在认知的灵活性和工作记忆中更有效,但在抑制性控制方面较弱。固定自行车在所有三个维度上都没有效果。在其他干预措施中,学习自行车,动物辅助疗法和Exergaming的认知能力表现更好。Spark,Neiyang Gong和武术也有效地改善了抑制性控制。但是,火花和固定自行车在改善工作记忆方面并不重要。
结果:包括12,990例随机分配给10种药理学干预措施和安慰剂的患者的25例RCT。与安慰剂相比,关于生殖器感染(GI)(GI),所有SGLT-2I,除Ertugli lopli ozin和ipragli lof ozin外,与GI的风险更高有关。empagli -lof ozin 10mg/d(88.2%,优势比[OR] 7.90,95%可信间隔[CRI] 3.39至22.08)可能是最危险的基于概率排名,300mg/d(70.8%或5.33,95%CRI 2.25至13.83)。此外,与尿路感染(UTI或2.11,95%CRI 1.20至3.79,87.2%),肾脏损伤(80.7%)和鼻咽炎(81.6%)相比,与尿路感染(UTI或2.11,95%CRI 1.20至3.79,87.2%)相比,Dapagli -lof ozin 10mg/d排名最高。没有观察到
或许可以理解为什么有些人对人工智能 (AI) 持怀疑态度。首先,媒体和研究报告经常说明机器将如何接管我们的工作,从而导致许多人目前担任的工作岗位被取代。其次,在许多情况下,AI 仍然是一个“黑匣子”。通常,在机器学习中,我们只能看到输入和输出,但不知道这些输入如何组合以达到结果。换句话说,机器以我们完全无法观察到的方式将输入转化为输出。将黑匣子算法应用于司法等公共生活的各个方面将产生深远的社会和道德影响。机器学习技术的发展正在全速前进。然而,监控和故障排除的方法却落后了。
抽象栽培的甲壳类肉(CCM)是一种直接从干细胞中创建高价值的虾,龙虾和螃蟹产品的手段,从而消除了养殖或捕捞活动物的需求。传统的甲壳类企业在管理过度捕捞,污染和变暖气候方面面临的压力增加,因此CCM可以提供一种方法,以确保随着全球对这些产品的需求的增长,CCM可以提供足够的供应。为了支持CCM的发展,本评论简要详细介绍了迄今为止的甲壳类细胞培养工作,然后再解决目前对甲壳类肌肉发育的了解,尤其是所涉及的分子机制,以及这可能与最近在脊椎动物物种中耕种肉类生产的作品有关。认识到目前缺乏可用于建立CCM培养物的细胞系,我们还考虑了可以非属于非属于的原发性干细胞来源,包括易于释放和重新生成的四肢组织,以及在循环血淋巴中推定的干细胞。分子方法诱导了肌源性分化和推定干细胞的永生化。最后,我们评估了CCM研究人员,尤其是抗体的工具的当前状态,并提出了解决现有短缺的途径,以查看现场的进展。
1398995,JA,从https://onlinelibrary.wiley.com/doi/10.1111/all.15652下载,由伯恩大学,Wiley Online Library,Wiley在线图书馆[23/01/2023]。有关使用规则,请参见Wiley Online Library上的条款和条件(https://onlinelibrary.wiley.com/terms-and-conditions); OA文章由适用的Creative Commons许可
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术