* COVID-19的症状可以包括发烧,咳嗽的新发作或慢性咳嗽的新发作,呼吸短,呼吸困难,喉咙痛,吞咽困难,气味或味道的难度,发冷,头痛,头痛,头痛,无法解释的疲倦或不适的疲劳或痛苦,痛苦或痛苦,鼻子或繁琐的鼻子或繁琐的鼻子或繁琐的鼻子,鼻子或杂物,鼻子,鼻子,鼻子,鼻子,鼻子,鼻子,鼻子痛苦,鼻子,鼻子,鼻子,鼻子,鼻子,杂物,鼻子,鼻子,杂物,鼻子,杂物,鼻子,鼻子,鼻子,鼻子,鼻子痛苦,鼻涕其他已知原因,或者,对于70岁以上的人,无法解释或增加的跌倒数量,急性功能下降,慢性条件恶化或del妄
对手术专业知识的抽象客观研究几乎完全集中在公开的行为特征上,而几乎没有考虑基本的神经过程。神经影像技术的最新进展,例如,无线,可穿戴的头皮记录的脑电图(EEG),可以深入了解控制性能的神经过程。我们使用头皮录制的脑电图来检查手术专业知识和任务性能是否可以根据称为额叶Theta的振荡性脑活动信号来区分,这是一种认知控制过程的假定生物标志物。设计,设置和参与者的行为和脑电图数据是从1年(n = 25)和4年经验(n = 20)的牙科手术学员那里获取的,而他们在虚拟现实手术模拟器上执行低和高难度的钻探任务。在正面电极(索引额叶theta)中的4-7 Hz范围内的EEG功率是经验,任务难度和错误率的函数。结果对于专家而言,新手的正面theta功率更大(p = 0.001),但没有根据任务难度(p = 0.15)的变化,并且没有经验×难度互动(p = 0.87)。大脑 - 行为相关性显示,在经验丰富的组中,额叶theta和错误的误差之间存在显着的负相关关系(r = -0.594,p = 0.0058),但新手没有这种关系。结论我们发现额叶theta功率在手术经验之间有区别,但仅与经验丰富的外科医生的错误率相关,同时执行艰巨的任务。这些结果为专业知识与外科手术表现之间的关系提供了一种新颖的看法。
Abstract — Since the wheel was invented back in the Stone Age, it was the primary component used in all forms of mechanical transportation. Even today it is the component of choice for almost any type of moving machine like cars. However, the wheel has always had a major disadvantage with short instant elevation changes like stairs. For most uses, climbing stairs or steep jagged rock piles is not a problem which is why the wheel is still almost always used. For the other applications, people looked at animal and human legs which are already proven to work effectively on this type of terrain. The two most effective leg mechanisms are currently Joe Klann's mechanism which resembles a spider leg and Theo Jansen's mechanism which resembles a human leg. We have chosen Joe Klann mechanism which has more advantage than Jansen mechanism. The main objective of our paper is to replace the function of wheel with an alternative in order to overcome the difficulty of travelling in uneven terrain. This paper is useful in hazardous material handling, clearing minefields or secures an area without putting anyone at risk. Keywords – Joe Klann's Mechanism, Theo Jansen's Mechanism, Steep Jagged Rock piles, Material Handling.
• 将机器学习模型的输出分解为其决策的底层驱动因素(称为可解释性)的难度是金融领域使用的基于人工智能的模型面临的最紧迫挑战。 • 解释和重现 GenAI 模型的决策机制的复杂性和难度使得降低使用过程中的风险变得具有挑战性。 • 通过可解释性,人工智能/机器学习系统可以证明它是如何解决问题的,而不是像一个神秘的黑匣子一样工作。 • 可解释性水平有限可能导致客户对人工智能辅助金融服务的信任度较低。
摘要:为了解决目前可靠性模拟试验环境搭建时间长、难度大的问题,提出了一种基于PCP的可靠性模拟试验系统,用于PCP的可靠性测试。