1个微生物社区中心,化学与生物科学系,丹麦奥尔堡市阿尔堡大学13号。2生物工程中心,葡萄牙Minho的大学14号。3水,能源和环境学院,克兰菲尔德大学。15英国克兰菲尔德。4澳大利亚水与环境中心16生物技术(ACWEB),澳大利亚昆士兰州大学。5部门17部民事和环境工程系,马萨诸塞州阿默斯特大学,马萨诸塞州,美国18号。 6阿根廷萨尔塔国立大学。 7化学系19工程,瑞典隆德大学。 8英格·科尼特(Ingebi-Conicet),布宜诺斯大学20艾尔斯,阿根廷。 9环境生物技术实验室,Ecole Polytechnique 21FédéraledeLausanne(EPFL),瑞士。 10城市供水系统主席22工程,慕尼黑技术大学(TUM),德国Garching。 11水质和资源管理研究所,奥地利Tu Wien。 12欧洲国家科学技术研究所(UNIST)的24个城市与环境工程与研究生院24个城市与环境工程与研究生院。 13学院26化学工程学,希腊雅典国家技术大学。 14应用27环境生物技术实验室,Birla技术与科学研究所28(BITS-PILANI),印度。 15生物学和化学科学学院和瑞安29 Institute,爱尔兰戈尔韦大学。 16波兰Poznan技术大学环境工程与能源学院的供水和生物经济部31。5部门17部民事和环境工程系,马萨诸塞州阿默斯特大学,马萨诸塞州,美国18号。6阿根廷萨尔塔国立大学。 7化学系19工程,瑞典隆德大学。 8英格·科尼特(Ingebi-Conicet),布宜诺斯大学20艾尔斯,阿根廷。 9环境生物技术实验室,Ecole Polytechnique 21FédéraledeLausanne(EPFL),瑞士。 10城市供水系统主席22工程,慕尼黑技术大学(TUM),德国Garching。 11水质和资源管理研究所,奥地利Tu Wien。 12欧洲国家科学技术研究所(UNIST)的24个城市与环境工程与研究生院24个城市与环境工程与研究生院。 13学院26化学工程学,希腊雅典国家技术大学。 14应用27环境生物技术实验室,Birla技术与科学研究所28(BITS-PILANI),印度。 15生物学和化学科学学院和瑞安29 Institute,爱尔兰戈尔韦大学。 16波兰Poznan技术大学环境工程与能源学院的供水和生物经济部31。6阿根廷萨尔塔国立大学。7化学系19工程,瑞典隆德大学。8英格·科尼特(Ingebi-Conicet),布宜诺斯大学20艾尔斯,阿根廷。9环境生物技术实验室,Ecole Polytechnique 21FédéraledeLausanne(EPFL),瑞士。10城市供水系统主席22工程,慕尼黑技术大学(TUM),德国Garching。11水质和资源管理研究所,奥地利Tu Wien。12欧洲国家科学技术研究所(UNIST)的24个城市与环境工程与研究生院24个城市与环境工程与研究生院。 13学院26化学工程学,希腊雅典国家技术大学。 14应用27环境生物技术实验室,Birla技术与科学研究所28(BITS-PILANI),印度。 15生物学和化学科学学院和瑞安29 Institute,爱尔兰戈尔韦大学。 16波兰Poznan技术大学环境工程与能源学院的供水和生物经济部31。12欧洲国家科学技术研究所(UNIST)的24个城市与环境工程与研究生院24个城市与环境工程与研究生院。13学院26化学工程学,希腊雅典国家技术大学。 14应用27环境生物技术实验室,Birla技术与科学研究所28(BITS-PILANI),印度。 15生物学和化学科学学院和瑞安29 Institute,爱尔兰戈尔韦大学。 16波兰Poznan技术大学环境工程与能源学院的供水和生物经济部31。13学院26化学工程学,希腊雅典国家技术大学。14应用27环境生物技术实验室,Birla技术与科学研究所28(BITS-PILANI),印度。 15生物学和化学科学学院和瑞安29 Institute,爱尔兰戈尔韦大学。 16波兰Poznan技术大学环境工程与能源学院的供水和生物经济部31。14应用27环境生物技术实验室,Birla技术与科学研究所28(BITS-PILANI),印度。15生物学和化学科学学院和瑞安29 Institute,爱尔兰戈尔韦大学。16波兰Poznan技术大学环境工程与能源学院的供水和生物经济部31。17水技术与环境工程系,捷克共和国32化学与技术布拉格大学。18研究33芬兰Espoo研发中心Kemira Oyj的科学家。19化学工程34分校,哈利法大学,阿拉伯联合酋长国。20环境科学和35工程计划,生物与环境科学与工程学36分部,阿卜杜拉科学技术大学(KAUST),沙特37阿拉伯。21微生物生态技术中心(CMET),根特大学,比利时38。39
8。目前很少有国家资助的计划为生物消化器计划和实施提供资格提供经济援助。对能源计划的关注,该计划是在法规中创建的,由PSC执导,但由第三方非营利组织管理,为包括生物消化器在内的可再生能源项目提供了定制的激励措施。此类项目可能有资格获得项目激励措施的50%的项目成本,最高300,000美元。某些联邦计划,例如《美国农村能源计划》,还提供了可能支持生物消化者的赠款和贷款保证。应该指出的是,这些计划为资本成本提供融资和激励措施,而AB 43/SB 70提案将在项目构建之前支持计划。因此,AB 43/SB 70提案可以被视为补充现有的财务援助计划。
如今,由于能源系统的复杂性、其多种功能以及指标不明确的使用,衡量组织的绩效仍然很困难。组织需要考虑能源问题以促进可持续发展。本文旨在开发一种衡量沼气厂能源可持续性绩效的方法,但研究的想法是确定该方法在多大程度上可以替代用于可持续性评估的传统方法,这些方法基于多标准决策。因此,评估绩效方法结合了模糊数字、语言量表和能源生命周期指标。对生物消化器进行了评估,考虑到三维可持续性结构,以两种情景(p 和 q)的能源可持续性绩效指数的形式呈现其结果。结果表明,能源可持续性绩效指数 q(0.382)的值相对低于情景 p(0.815)所实现的指数。情景 q 的生物消化器在向能源可持续性转变方面没有表现出积极的前景。所提出的方法是一种新的简单方法,旨在将当前的能源绩效评估替换为考虑不确定性的技术评估解决方案,而软件不支持这种解决方案。建议的能源生命周期分析指标可用于评估各国规模相似的沼气厂。它们还可用于对模拟各种能源参数的工厂进行优先排序,或启发能源决策者在不确定的环境中提供更灵活、更可靠的结果。
大气中二氧化碳(CO 2)的浓度增加,而严格的温室气体(GHG)还原靶标需要开发适用于废物和废水领域的CO 2固相技术。这项研究解决了CO 2排放的减少,并增强了与CO 2富集厌氧消化剂(ADS)相关的沼气产量。通过将CO 2在0、0.3、0.6和0.9 m的分数注射到处理食物浪费或污水污泥的批处理广告中,检查了CO 2富集的益处。每日甲烷(CH 4)的食物废物生产增加了11-16%,在第一个24小时内,污水污泥的污泥为96-138%。据估计,污水污泥的潜在CO 2减少了8-34%,食物浪费的3-11%减少。广告利用其他CO 2的能力被策划了,这可以为CO 2流的现场隔离提供潜在的解决方案,同时增强可再生能源的产生。2014 Elsevier Ltd.保留所有权利。