b'genation 的 C3 和 C2 位尚未开发。在此,我们报道了一种无催化剂获取 1-芳基 2,3-二碘咔唑 [7,8] 的方法,其中涉及碘转位(方案 1D)。值得注意的是,我们的方案允许在三个连续位置 [9] 即 C1、C2 和 C3 对咔唑核心进行可控官能化。环化前体 (碘吲哚基)炔醇 1a \xe2\x80\x93 n 是使用已知程序由适当的吲哚-2-甲醛制备的。[5] 我们的旅程始于研究苯基取代炔醇 1a 作为模型底物的反应(表 1)。 [10] 我们研究了 1a 与几种碘化试剂(如 I 2 、NIS、ICl 和 Ipy 2 BF 4 )的反应。在碳酸钠存在下,在异丙醇中,在 15 °C 下使用 ICl [11] 可有效实现串联碘环化-碘移位。使用 1.1 倍过量的 ICl 可得到三环 2a ,产率为 50%(表 1,条目 5),而使用 2.5 倍过量的 ICl 可得到所需的杂环,产率为 60%(表 1,条目 3)。通过对粗反应混合物进行 TLC 和 1 H NMR 分析观察到总转化率,未检测到副产物或聚合反应。然而,在柱层析纯化 2,3-二碘-咔唑 2a 的过程中观察到一些分解,这可能是导致分离产率适中的原因。值得注意的是,重排的 1-苯基-2,3-二碘-咔唑 2a 是唯一的区域异构体。使用有机碱代替 K 2 CO 3 或不同的溶剂'
- 用户可以从公共门户网站下载并打印一份出版物的副本,以进行私人研究或研究。- 您可能不会进一步分发材料或将其用于任何盈利活动或商业收益 - 您可以自由分发URL,以确定公共门户网站中的出版物 - 如果您认为此文件违反版权,请通过vbn@aub.aau.dk与我们联系,我们将立即删除工作的详细信息,并立即删除访问详细信息并调查您的索赔。
CRISPR/Cas9(成簇的规律间隔的短回文重复序列/CRISPR 相关蛋白)系统是一种快速高效编辑基因组的有用工具。然而,使用 CRISPR/Cas9 编辑细菌基因组仅限于选择主要用于高价值产品生物生产的微生物底盘。因此,需要将 CRISPR/Cas9 工具扩展到其他微生物。在这里,我们的目标是评估 CRISPR/Cas9 对柠檬酸杆菌 ATCC 8090 型菌株基因组编辑的适用性。我们评估了常用的双质粒 pCas/pTargetF 系统,以实现柠檬酸杆菌中的基因删除和插入,并确定了编辑效率。基于 CRISPR/Cas9 的方法对半乳糖激酶 (galk) 的删除具有高编辑效率(~91%),并且能够使用各种单向导 RNA (sgRNA) 序列进行删除。为了评估 CRISPR/Cas9 工具插入基因的能力,我们使用了荧光报告基因 mNeonGreen、内肽酶 ( yebA ) 和转录调节剂 ( xylS ),发现每个基因都以高效率 (81 – 100%) 成功插入。这些结果加强并扩展了 CRISPR/Cas9 基因组编辑在 C. freundii 中的应用,将其作为额外的微生物底盘。
引言 水蕨属 (Ceratopteris) 的分类历史悠久而复杂。它最早由林奈 (Linnaeus) 描述为 Acrostichum 属 (Linnaeus, 1764),后来布隆尼亚 (Brongniart) (Brongniart, 1821) 将水蕨命名为水蕨 (Ceratopteris)。从那时起,水蕨被归入许多不同的科,属内物种数在 1 到 12 种之间 (Lloyd, 1974)。如今,它被归入蕨科,这是最大的和最具多样性的蕨类植物科之一 (PPG, 2016;图 1)。水蕨属大约有 10 个物种,遍布整个热带地区 (图 2;Masuyama 和 Watano, 2010;Zhang 等, 2020;Yu 等, 2021)。由于形态不一致,这些物种的分类变得困难,需要采用分子方法来重建该属的主干系统发育 ( Adjie 等人,2007 年;Kinosian 等人,2020 年 a)。最近的研究表明,隐蔽种和杂交种在水蕨属中可能相当常见,需要更严格地评估该属物种之间的关系 (例如,Kinosian 等人,2020 年 b)。水蕨属植物最初在 20 世纪 60 年代和 70 年代被开发为蕨类植物的模型系统,主要是因为它易于在实验室中生长并且生命周期短 (图 2 ;Pal 和 Pal,1962 年;Pal 和 Pal,1963 年;Klekowski,
摘要 弓形虫是一种重要的人类病原体,全球约有三分之一的人感染该病。细胞因子干扰素γ (IFNγ) 在感染过程中被诱导,对于限制人体细胞中的弓形虫生长至关重要。生长限制被认为是由于干扰素刺激基因 (ISG) 的诱导所致,这些基因被上调以保护宿主免受感染。尽管 IFNγ 可诱导数百种 ISG,但它们在限制人体细胞中寄生虫生长方面各自的作用仍然有些难以捉摸。为了解决这一缺陷,我们筛选了 414 个 IFNγ 诱导的 ISG 库,以确定影响人体细胞中弓形虫感染的因子。除了可能通过诱导大量下游基因发挥作用的 IRF1 之外,我们还发现 RARRES3 是限制多种人体细胞系中弓形虫过早逸出而产生的单一因子。总体而言,虽然我们成功鉴定出一种新的 IFNγ 诱导的可限制弓形虫感染的因子,但单独表达时能够限制弓形虫感染的 ISG 数量有限,这表明 IFNγ 介导的对弓形虫感染的免疫是一个复杂的、多因素的过程。
现职和职位:退休 现职年限:50 年 专利:在磁环境应用的铁磁合金薄层电化学制备领域拥有 6 项专利 专业协会成员: 正式会员 – 罗马尼亚物理学会 正式会员 – 罗马尼亚材料科学-晶体生长学会 正式会员 – 欧洲物理学会 (自 1997 年起) 正式会员 – IEEE 磁学学会 (自 2000 年起) 研究员 – 世界创新基金会 (自 2002 年起) 正式会员 – 国际电化学学会 (自 2005 年起) 熟练外语:英语、法语、俄语 专业领域:先进的纳米结构材料、纳米技术;薄层和表面物理学、表面/界面现象及应用;凝聚态物理学;磁学与磁性材料;分子物理学和热力学。该研究课题包括以下主要领域: - 研究获取和研究多层金属膜和纳米结构磁性材料的磁性能, - 研究获取和研究新型磁性材料(薄层形式)的磁性能、薄层中的有序-无序转变, - 应用研究(在磁传感器和数字磁记录领域应用的磁性材料)、磁传感器的应用, - 设计和建造用于教学和研究的实验室设施。
摘要:弓形虫病的病原体,弓形虫弓形虫(T. gondii),是一种人畜共患的原生动物,可以影响包括人类在内的温血动物的健康。到目前为止,一种具有完全保护的有效疫苗仍然无法访问。在这项研究中,构建了编码T. gondii组蛋白脱乙酰基酶SIR2(PVAX1-SIR2)的DNA疫苗。用于增强效能元,壳聚糖和poly(D,l-乳酸 - 糖 - 糖)酸(PLGA)用于设计带有DNA疫苗的纳米球,称为PVAX1-SIR2/CS和PVAX1-SIR2/CS和PVAX1-SIR2/PLGA纳米球。将PVAX1-SIR2质粒转染到HEK 293-T细胞中,并通过激光扫描共聚焦显微镜评估表达。然后,在实验室动物模型中评估了PVAX1-SIR2质粒,PVAX1-SIR2/CS纳米球和PVAX1-SIR2/PLGA纳米球的免疫保护。体内发现表明PVAX1-SIR2/CS和PVAX1-SIR2/PLGA纳米球可以产生混合的Th1/Th2免疫反应,如受调节的抗体和细胞因子的受调节的产生所示,成熟和组成(MHC)的表达(MHC)的表达(MHC)的表达(dccompositience)的表达(dcandrien)的表达(dcandrien)是dccompositient的表达。增殖和CD4 +
本文可根据 Wiley 自存档版本使用条款和条件用于非商业目的。未经 Wiley 明确许可或适用法律规定的法定权利,不得对本文进行增强、丰富或以其他方式将其转化为衍生作品。不得删除、隐藏或修改版权声明。本文必须链接到 Wiley 在 Wiley 在线图书馆上的记录版本,并且禁止第三方从 Wiley 在线图书馆以外的平台、服务和网站嵌入、框架或以其他方式提供本文或其页面。
新孢子虫主要感染牛,导致牛流产,估计每年对全球经济造成 10 亿美元的损失。然而,对其生物学的研究一直被忽视,因为既定范式认为它与其近亲、广泛研究的人类病原体弓形虫几乎完全相同。通过使用第三代测序技术重新审视基因组序列、组装和注释,我们在此表明,新孢子虫基因组最初是在与弓形虫同源的假设下错误组装的。我们表明这些物种之间发生了重大染色体重排。重要的是,我们表明最初命名为 Chr VIIb 和 VIII 的染色体确实融合了,从而将新孢子虫和弓形虫的核型都减少到 13 条染色体。我们重新注释了新孢子虫基因组,揭示了 500 多个新基因。我们对非光合质体和线粒体基因组进行了测序和注释,并表明尽管顶质体基因组几乎相同,但物种和菌株之间存在高水平的基因碎片化和重组。我们的结果纠正了目前在 N. caninum 和 T. gondii 基因组数据库中广泛分布的组装伪影,更重要的是,突出了线粒体是以前被忽视的变异源,并为改变同源性范式铺平了道路,鼓励重新思考基因组作为这些病原体比较独特生物学的基础。
通过FDA获得许可,FDA是由FDA发明家突变的独特的柠檬酸菌菌株WR7004,以创建在其表面上表达VI多糖的菌株(WR7011)。C. freundii WR7011表达的VI多糖多糖是鼠伤寒的天然菌株,具有非疾病性,并且可以更安全地用于VI生产或疫苗菌株。使用亚硝基瓜氨酸专门突变该菌株。这种菌梭菌的菌株可以降低净化VI多糖的成本,并提供一种生产多糖的安全方法。