这项工作涉及解决高维fokker-planck方程的新观点,即可以根据其相关粒子动力学采样的轨迹将求解PDE求解为密度估计任务的独立实例。使用这种方法,一个回避误差积累是由于在参数化函数类上集成了PDE动力学而产生的。这种方法显着简单地简化了部署,因为人们没有基于不同方程的损失条款的挑战。特别是我们引入了一类新的高维函数,称为功能层次张量(FHT)。FHT ANSATZ利用了层次的低级别结构,从而相对于维度计数,具有线性可扩展的运行时和内存复杂性的优势。我们引入了一种基于草图的技术,该技术对与方程相关的粒子动力学模拟的粒子进行密度估计,从而根据我们的ANSATZ获得了Fokker-Planck解决方案的表示。我们将提出的方法成功地应用于具有数百个变量的三个具有挑战性的时间依赖的Ginzburg-Landau模型。
1-d feaible储能字符串已成为一种跨形成技术。它们可以在设备周围缠绕,也可以无缝编织成衣服,提供一种用于为各种电子应用提供电能的方法。这项创新使个人在穿着智能衣服的同时为电子设备提供动力,并在可穿戴技术的新时代迎来了。86就像传统电池的对应物一样,1-d feaible能量设备由电极,电解质,隔离器和包装材料组成,其中电极研究是主要的研究对象。值得注意的是,Peng的小组为1-D敏化电池/超级电容器的研究做出了很多贡献。7,44,45,87 - 92他们探索了各种1-D的固定设备的制造,包括对称超级电容器,不对称的超级电容器和锂离子电池。这些设备将进一步编织成可穿戴的电池/超级电容器。7,8彭的研究小组取得的显着进展导致了实用的ber电池,数米甚至数十米。这些扩展的bers可以编织成织物,并且它们继续可靠地发挥了经过清洗和持久的紧迫性,更重要的是,这些电池没有显示出任何安全问题,例如烟雾,re或爆炸或爆炸。7,8
格朗蒙特(Grammont)在1985年对RTSA的发展标志着骨科手术的重要里程碑(1)。自成立以来,RTSA的应用由于其不断扩大的适应症而产生了显着的全球激增,现在它涵盖了Glenohumeral骨关节炎,袖口撕裂关节炎,近端肱骨骨折,甚至是适用的修订方案(2)。尽管有希望的长期到患者满意度的长期结局,但仍有相当数量的并发症持续存在(3,4)。虽然解剖学总肩关节置换术(ATSA)和RTSA都表现出极好的长期生存率,但并发症仍然出现(5)。一些最常见的并发症是肩cap骨,不稳定性和腺体松动,它们通常与关节腺体成分的不适当定位有关(3、5、6)。精确的组件放置已被确定为避免这种并发症,实现出色的生物力学性能和优化功能结果的关键因素,这强调了精确植入物定位以最大程度地减少不良事件风险的重要性(7)。
格朗蒙特(Grammont)在1985年对RTSA的发展标志着骨科手术的重要里程碑(1)。自成立以来,RTSA的应用由于其不断扩大的适应症而产生了显着的全球激增,现在它涵盖了Glenohumeral骨关节炎,袖口撕裂关节炎,近端肱骨骨折,甚至是适用的修订方案(2)。尽管有希望的长期到患者满意度的长期结局,但仍有相当数量的并发症持续存在(3,4)。虽然解剖学总肩关节置换术(ATSA)和RTSA都表现出极好的长期生存率,但并发症仍然出现(5)。一些最常见的并发症是肩cap骨,不稳定性和腺体松动,它们通常与关节腺体成分的不适当定位有关(3、5、6)。精确的组件放置已被确定为避免这种并发症,实现出色的生物力学性能和优化功能结果的关键因素,这强调了精确植入物定位以最大程度地减少不良事件风险的重要性(7)。
本研究对量子力学中出现的一维时间分数阶非线性薛定谔方程进行了分析研究。在本研究中,我们建立了 Sumudu 变换残差幂级数法 (ST-RPSM) 的思想,以生成具有分数阶导数的非线性薛定谔模型的数值解。提出的思想是 Sumudu 变换 (ST) 和残差幂级数法 (RPSM) 的组合。分数阶导数取自 Caputo 意义。所提出的技术是独一无二的,因为它不需要任何假设或变量约束。ST-RPSM 通过一系列连续迭代获得其结果,并且得到的形式快速收敛到精确解。通过 ST-RPSM 获得的结果表明,该方案对于非线性分数阶模型是真实、有效和简单的。使用 Mathematica 软件以不同的分数阶级别显示一些图形结构。
二维(2D)材料中的摘要研究兴趣由于其独特而引人入胜的特性而导致了指数增长。高度裸露的晶格平面以及2D材料的可调电子状态在设计新平台上为能量转换和传感应用的新平台创造了流动机会。仍然,理解这些材料的电化学(EC)特征的挑战是源于固有和外在异质性的复杂性,这些异质性可能会掩盖结构 - 活性相关性。扫描EC探针显微镜调查在揭示纳米级级别的局部EC重新激素方面提供了独特的好处,而纳米级级别则无法使用宏观方法。本综述总结了应用扫描EC显微镜(SECM)和扫描EC细胞显微镜(SECCM)的最新进展,以获得对2D电极基本面的独特见解。我们展示了EC显微镜在解决缺陷,厚度,环境,应变,相位,堆叠和许多其他方面的功能,以及代表性2D材料及其衍生物及其衍生物的光电化学。对扫描EC探针显微镜调查的优势,挑战和未来机会的观点进行了讨论。
1个电子科学与工程学学校,南京大学,南京210023,中国; 2中国苏州215163的南京大学跨学科研究中心(CHIP-X)跨学科研究中心(CHIP-X)综合电路学院; 3南京邮政与电信大学综合电路科学与工程学院,中国南京210003; 4上海技术物理研究所中国科学学院的国家主要实验室,中国上海,200083年; 5物理学学院和量子材料的关键实验室和教育部的量子材料和设备,东南大学电子科学与工程学院,中国南京211189; 6硅和高级半导体材料的综合电路学院,中国杭州310027,吉安大学; 7苏州实验室,苏州215004,中国; 8中国福丹大学微电子学院综合芯片和系统的国家主要实验室,200433年,中国; 9 Shaoxin实验室,Shaoxing 312000,中国; 10香港理工大学应用物理系,香港999077,中国; 11湖南材料科学与工程学院,匈牙利大学,匈牙利大学,长沙410082,荷兰省微型物理和技术的主要实验室;中国杭州311200的郑大学综合电路学院;1个电子科学与工程学学校,南京大学,南京210023,中国; 2中国苏州215163的南京大学跨学科研究中心(CHIP-X)跨学科研究中心(CHIP-X)综合电路学院; 3南京邮政与电信大学综合电路科学与工程学院,中国南京210003; 4上海技术物理研究所中国科学学院的国家主要实验室,中国上海,200083年; 5物理学学院和量子材料的关键实验室和教育部的量子材料和设备,东南大学电子科学与工程学院,中国南京211189; 6硅和高级半导体材料的综合电路学院,中国杭州310027,吉安大学; 7苏州实验室,苏州215004,中国; 8中国福丹大学微电子学院综合芯片和系统的国家主要实验室,200433年,中国; 9 Shaoxin实验室,Shaoxing 312000,中国; 10香港理工大学应用物理系,香港999077,中国; 11湖南材料科学与工程学院,匈牙利大学,匈牙利大学,长沙410082,荷兰省微型物理和技术的主要实验室;中国杭州311200的郑大学综合电路学院;
1 南京大学电子科学与工程学院,南京 210023;2 南京大学集成电路学院、未来智能芯片交叉学科研究中心(Chip-X),苏州 215163;3 南京邮电大学集成电路科学与工程学院,南京 210003;4 中国科学院上海技术物理研究所红外物理国家重点实验室,上海 200083;5 东南大学电子科学与工程学院物理学院、量子材料与器件教育部重点实验室,南京 211189;6 浙江大学集成电路学院、硅基与先进半导体材料国家重点实验室,杭州 310027;7 苏州实验室,苏州 215004; 8 复旦大学微电子学院集成芯片与系统国家重点实验室,上海 200433;9 绍兴实验室,浙江绍兴 312000;10 香港理工大学应用物理系,香港 999077;11 湖南大学材料科学与工程学院,湖南省微纳物理与技术重点实验室,长沙 410082;12 浙江大学集成电路学院,浙江杭州 311200;
近年来,短视频平台广受欢迎,视频推荐的质量对于留住用户至关重要。现有的推荐系统主要依赖于行为数据,但由于数据稀疏、偶然交互或个人习惯噪声等问题,行为数据在推断用户偏好时受到限制。为了应对这些挑战并更全面地了解用户的情感体验和认知活动,我们提出了EEG-SVRec,这是第一个具有短视频推荐中用户多维情感参与标签的EEG数据集。该研究涉及30名参与者并收集了3,657次交互,提供了丰富的数据集,可用于更深入地探索用户偏好和认知活动。通过结合自我评估技术和实时、低成本的EEG信号,我们可以更详细地了解用户的情感体验(效价、唤醒、沉浸感、兴趣、视觉和听觉)及其行为背后的认知机制。我们通过推荐算法建立了评分预测基准,结果表明,加入 EEG 信号后,评分预测效果显著改善。此外,我们展示了该数据集在洞察推荐系统中用户行为背后的情感体验和认知活动方面的潜力。这项工作通过利用 EEG 信号和多维情感参与分数中包含的丰富信息,为增强短视频推荐提供了一种新颖的视角,为未来短视频推荐系统的研究铺平了道路。数据集可在 https://github.com/hezy18/EEG-SVRec 上找到
5材料研究中心纳米结构科学研究中心,国家材料科学研究所,1-1纳米基,塔苏卡巴,日本305-0044 *乐队。反演对称性在菱形堆积的过渡金属二分法元素(TMDC)中赋予它们与平面电动极化相关的界面铁电性。通过将扭转角作为旋钮构建菱形堆积的TMDC,可以生成具有交替平面偏振的抗fiferroelelectric域网络。在这里,我们证明了这种并行堆叠的扭曲WSE 2中这种空间周期性的铁电极化可以将其Moiré电位烙印在远程双层石墨烯上。这种遥远的Moiré电位产生了明显的卫星电阻峰,除了石墨烯中的电荷 - 中性点,它们可以通过WSE 2的扭曲角度调节。我们对有限位移场上铁电滞后的观察表明,Moiré由远程静电电势传递。通过MoiréFerroelectricity构建的超级晶格代表了一种高度灵活的方法,因为它们涉及Moiré构造层与电子传输层的分离。这个远程莫伊尔被确定为弱势势,可以与常规的莫伊尔共存。我们的结果通过利用Moiré铁电性提供了二维材料的工程带结构和特性的全面策略。