2024年11月13日,杰出卓越中心荣幸地接待了欧洲研究委员会(ERC),玛丽亚·莱特蛋白教授的主席,并讨论了ERC为塞浦路斯及其他地区带来的巨大价值。她访问库式是她正式访问塞浦路斯的框架,作为塞浦路斯科学,文书和艺术学院的客人,包括一系列会议和与塞浦路斯的研究社区的访问。
5材料研究中心纳米结构科学研究中心,国家材料科学研究所,1-1纳米基,塔苏卡巴,日本305-0044 *乐队。反演对称性在菱形堆积的过渡金属二分法元素(TMDC)中赋予它们与平面电动极化相关的界面铁电性。通过将扭转角作为旋钮构建菱形堆积的TMDC,可以生成具有交替平面偏振的抗fiferroelelectric域网络。在这里,我们证明了这种并行堆叠的扭曲WSE 2中这种空间周期性的铁电极化可以将其Moiré电位烙印在远程双层石墨烯上。这种遥远的Moiré电位产生了明显的卫星电阻峰,除了石墨烯中的电荷 - 中性点,它们可以通过WSE 2的扭曲角度调节。我们对有限位移场上铁电滞后的观察表明,Moiré由远程静电电势传递。通过MoiréFerroelectricity构建的超级晶格代表了一种高度灵活的方法,因为它们涉及Moiré构造层与电子传输层的分离。这个远程莫伊尔被确定为弱势势,可以与常规的莫伊尔共存。我们的结果通过利用Moiré铁电性提供了二维材料的工程带结构和特性的全面策略。
电池储能系统 (BESS) 在智能电网中起着至关重要的作用,辅助市场提供了高额收益。对于 BESS 所有者来说,决定如何在不同的报价之间取得平衡并与竞争对手竞价,以实现利润最大化非常重要。因此,本文将 BESS 竞价问题表述为马尔可夫决策过程 (MDP),以最大化自动发电控制 (AGC) 市场和能源市场的总利润,同时考虑充电/放电损耗和 BESS 的寿命等因素。在所提出的算法中,引入了函数逼近技术来处理连续的大规模竞价规模并避免维数灾难。作为一种无模型方法,所提出的算法可以从电力市场的随机和动态环境中学习,从而帮助 BESS 所有者有利可图地决定他们的竞价和运营计划。几个案例研究说明了所提算法的有效性和有效性。
夹片键合 CCPAK-1212:设计下一代 GaN 产品 Serge Karboyan、Ding Yandoc、Barr Licup、Manikant、Sara Martin Horcajo、Stefano Dalcanale、John Denman、Zainul Fiteri、Hagop Tawidian、Manfred Rowe、Sven Zastrau、Adam Brown 和 Bas Verheijen Nexperia,Bramhall Moor Ln,斯托克波特,大曼彻斯特,英国 关键词:GaN、AlGaN、CCPAK1212、夹片键合、封装、产品可靠性。 引言 Nexperia 的商业化 GaN 基功率晶体管在功率器件市场表现出巨大优势,在 650 V 时提供低导通电阻。为了在不同应用(如车载充电器、DC-DC 转换器、牵引逆变器)[1、2] 中实现这种出色性能,Nexperia 推出了一种新型夹片键合封装 HEMT,在高工作电压下具有低关断态漏电。虽然这是 GaN 行业中第一个推出完全夹片键合解决方案而不需要任何引线键合连接的解决方案,但该解决方案的电感比引线封装低 5 倍(2.37 nH 对比近 14 nH),并且封装电阻超低,热阻小于 0.5 K/W [3]。要保持这种性能,需要高水平的器件工程设计,包括 HEMT 设计、MOSFET 设计以及紧凑型 CCPAK 中的共源共栅配置,从而形成具有行业领先性能的创新封装。夹片键合配置用于优化热性能和电气性能,简化的共源共栅可避免使用栅极驱动器。结果与讨论图 1 显示了共源共栅配置中的无引线键合 GaN HEMT 和 Si MOSFET。这些器件位于
Brink, W. (2004)。可卡因渴求的两个新神经生理指标:诱发脑电位和提示调节的惊吓反射。《精神药理学杂志》,18,544–552。https://doi.org/10.1177/02698 81104047282 Friedrichs, F.,& Igel, C. (2005)。多个 SVM 参数的进化调整。神经计算,64,107–117。https://doi.org/10.1016/j. neucom.2004.11.022 Healey, JA,& Picard, RW (2005)。使用生理传感器检测现实世界驾驶任务中的压力。 IEEE 智能交通系统学报,6(2),156–166。https://doi. org/10.1109/TITS.2005.848368 Hearst, MA、Dumais, ST、Osman, E.、Platt, J. 和 Scholkopf, B.
对于眼科,对于传统的基于被动扩散的药物干预,仍然存在许多不确定性和挑战。主要障碍之一是由复杂的玻璃体体和内部生物学大分子引起的有限渗透。在这里,我们第一次证明了新型TiO 2 @N-AU纳米线(NW)电动机/机车机器人由无线自然可见光诱导的动作可以自主,有效地通过光电粒的机制自动渗透到玻璃体体内。具有效率的推进,以及与玻璃体网络的空隙相匹配的NW电动机的纳米级尺寸,无创深入玻璃体体,并克服非均匀的非牛顿液(剪切薄和粘弹性)。我们设想了主动可见的轻型TIO 2 @N-AU NW电动机可容纳深眼病和无线生物电子药物的巨大应用前景。©2022 Elsevier Ltd.保留所有权利。
在存在外部电气和量化磁场以及接近度诱导的交换相互作用的情况下,我们从理论上研究了单层(ML)过渡金属二核苷(TMD)的磁光(MO)性质。通过求解Schr odinger方程来研究相应的Landau水平(LL)结构,并评估ML-TMD的自旋极化在磁场的作用下。此外,在标准的随机相近似(RPA)中,纵向MO电导率是通过动力学介电函数计算的。我们以ML-MOS 2为例,以检查接近诱导的交换相互作用的影响,外部电气和磁场对通过LLS之间的内部和带电子过渡引起的MO电导率。对于传导或价带中的内标电子过渡,我们可以观察到Terahertz(THZ)频率范围的两个吸收峰。虽然传导和价LL之间的带电子间过渡显示可见范围内的一系列吸收峰。我们发现,接近度诱导的交换相互作用,载体密度,外部电气和磁场的强度可以有效地调节吸收峰的位置以及MO吸收光谱的形状。从这项研究中获得的结果可以使人们对ML-TMD的MO性质有深入的理解,这些理解可能可用于可见在THZ频率带宽方面的磁光,旋转和valleytronic设备。
Haohong Lin, Wenhao Ding, Zuxin Liu, Yaru Niu, Jiacheng Zhu, Yuming Niu, and Ding Zhao
Busulfan(BU)是一种用于化学疗法方案的烷基化剂,以及诸如环磷酰胺(CY)和氟甲滨(Flu)的药物,用于造血干细胞移植(HSCT)。由于对儿童全身照射的长期影响的担忧,基于BU的调节方案已被广泛应用于小儿造血干细胞的调节。但是,BU具有狭窄的治疗窗口,其药代动力学特征显示出显着的个体间变异性,这在儿童中尤其明显(Marsit等,2020)。不足的药物暴露与移植衰竭或复发率更高有关,而过度暴露与毒性增加和与移植相关的死亡率增加有关(Bartelink等,2016)。值得注意的是,BU的效率和不良药物反应与其血液浓度的集中时间曲线(AUC)紧密相关,因此通常需要进行治疗药物监测(TDM)以实现个性化药物管理(Rasor等人,Rasor等,2019; Sweiss等,2019; Sweiss等,2020; Bogn。;Bognàret,2022; bogn- et al et a,202 and a,202 al an a e,202 al an a g an,202 and al a a n a e,202 al。有限的采样策略(LSS)是一种使用药代动力学模型来确定最佳采样
1。Mitchell和Al。Lanced 2018:392:1147–52。klein和al。Science 2005; 308:385-9。 3。 Edwards和Al。 Science 2005; 308:421-4。 4。 Raychaudhuri和Al。 非基因特2011; 43:1232-6。 5。 ding和al。 赎回2014年早期; 801:213-1 6。 Coffey和Al。 美国Acade 2007; 104:16651-6。 7。 ding和al。 AM J Pathol 2015; 185:29-4 8。 Vincenty和Al Viss Sci 2010的眼科投资; 51:5878-8 9。 Smail和Al。 眼科2012; 119:339-4Science 2005; 308:385-9。3。Edwards和Al。 Science 2005; 308:421-4。 4。 Raychaudhuri和Al。 非基因特2011; 43:1232-6。 5。 ding和al。 赎回2014年早期; 801:213-1 6。 Coffey和Al。 美国Acade 2007; 104:16651-6。 7。 ding和al。 AM J Pathol 2015; 185:29-4 8。 Vincenty和Al Viss Sci 2010的眼科投资; 51:5878-8 9。 Smail和Al。 眼科2012; 119:339-4Edwards和Al。Science 2005; 308:421-4。 4。 Raychaudhuri和Al。 非基因特2011; 43:1232-6。 5。 ding和al。 赎回2014年早期; 801:213-1 6。 Coffey和Al。 美国Acade 2007; 104:16651-6。 7。 ding和al。 AM J Pathol 2015; 185:29-4 8。 Vincenty和Al Viss Sci 2010的眼科投资; 51:5878-8 9。 Smail和Al。 眼科2012; 119:339-4Science 2005; 308:421-4。4。Raychaudhuri和Al。非基因特2011; 43:1232-6。5。ding和al。赎回2014年早期; 801:213-16。Coffey和Al。 美国Acade 2007; 104:16651-6。 7。 ding和al。 AM J Pathol 2015; 185:29-4 8。 Vincenty和Al Viss Sci 2010的眼科投资; 51:5878-8 9。 Smail和Al。 眼科2012; 119:339-4Coffey和Al。美国Acade 2007; 104:16651-6。7。ding和al。AM J Pathol 2015; 185:29-48。Vincenty和AlViss Sci 2010的眼科投资; 51:5878-89。Smail和Al。眼科2012; 119:339-4