研究人员Harald Putterman及其同事探讨了一种使用一种称为玻色猫量子量的量子的量子校正量子校正的可能更有效的方法。这些猫码比在硬件级别上本质上是对一种错误(称为稍微翻转)的高度抵抗力,以牺牲更有可能体验另一种类型(称为相位翻转)。此错误偏差使研究人员可以设计量子误差 - 纠正仅着重于处理相位流误差的代码,从而导致总体上更有效的设计,需要更少的额外量子位。
摘要。我们为受路易斯·德·布罗格利(Louis de Broglie)的双重分解理论启发的量子力学提出了解释框架。原理是将量子系统的演变分解为两个波函数:与其质量中心相对应的外波函数以及其他宏观自由度的演变,以及对应于其内部变量在中心中心系统中内部变量演变的内部波函数。这两个波函数将具有不同的含义和解释。外波函数“试验”量子系统的质量中心:它对应于de Broglie Pilot Wave。对于内部波函数,我们主张1927年在Solvay国会上提出的解释:颗粒是扩展的,并且电子的(内部)波函数的模块的平方与其在太空中的电荷密度相对应。Résumé。nous提议une delaMécaniquedelaMécaniquequi s'inspire de lathéoriede la doul double Solution de Louis de Broglie。Le principe est de considérer l'évolution d'un sys- tème quantique sous la forme de deux fonctions d'onde : une fonction d'onde externe correspondant à l'évolution de son centre de masse et de ces autres degrés de liberté macroscopique, et une fonction d'onde interne correspondant à l'évolutionde ses变量实习生dans leréférentieldu Center de Masse。ces deux fonctions d'Onde vont vont avoir des ves des desuttations di a vientations。la fonction d'Onde externe pilote le Center de Masse dusystèmeQuantique:Elle sossection use sosectionunde unde unde pilote de louis de louis de Broglie。对于内部波函数,我们捍卫了ErwinSchrödinger在1927年Solvay国会上提出的解释:颗粒是扩展的,并且电子的(内部)波函数模块的平方与其在太空中的负载密度相对应。
d≥2的可能具有正(d -1)-hhusdor效法。 在[LM18,定理5.1]中也获得了一些(d -1 -δ)-hhusdor e含量的梯度的传播。 作为|∇u |的零在[NV17]中显示了有限的(d -2) - hausdor效法,在[LM18]中猜测是|∇u |的结果。应预期从任何δ> 0的正(d -2 +δ) - huusdor e含量中保留。 到现在为止,这个猜想仍然开放。 然后,本文的第一个目标是将Malinnikova的结果扩展到Schrödinger类型方程(1.1)。 在[LM18]相同的环境中,以完全的一般性获得了小型溶液的传播。 另一方面,仅在特定环境中得出了梯度小的传播。 的确,人们不能期望在完全普遍的情况下为(1.1)梯度传播小额的繁殖,因为如[hhohon99,备注p。 362],r d的每个闭合子集都可能是这种函数的关键集,因此也没有希望从一组(d -1 -1 -δ) - hausdor效应的集合中传播小的内容,即使对于小δ> 0。 尽管如此,我们的特殊结果对于我们接下来描述的光谱估算的应用程序很充分。可能具有正(d -1)-hhusdor效法。在[LM18,定理5.1]中也获得了一些(d -1 -δ)-hhusdor e含量的梯度的传播。作为|∇u |的零在[NV17]中显示了有限的(d -2) - hausdor效法,在[LM18]中猜测是|∇u |的结果。应预期从任何δ> 0的正(d -2 +δ) - huusdor e含量中保留。到现在为止,这个猜想仍然开放。然后,本文的第一个目标是将Malinnikova的结果扩展到Schrödinger类型方程(1.1)。在[LM18]相同的环境中,以完全的一般性获得了小型溶液的传播。另一方面,仅在特定环境中得出了梯度小的传播。的确,人们不能期望在完全普遍的情况下为(1.1)梯度传播小额的繁殖,因为如[hhohon99,备注p。 362],r d的每个闭合子集都可能是这种函数的关键集,因此也没有希望从一组(d -1 -1 -δ) - hausdor效应的集合中传播小的内容,即使对于小δ> 0。尽管如此,我们的特殊结果对于我们接下来描述的光谱估算的应用程序很充分。
本文的目的是证明对球中Schr odinger操作员的第一个特征值的定量不平等。更准确地说,我们优化了操作员L V的第一个特征值λ(v),在v上,在v上,在l 1和l∞约束下,具有dirichlet边界条件相对于电势V。该解决方案已知是中心球的特征功能,但是本文旨在证明以下形式的急剧生长速率:如果V ∗是最小化器,则λ(v)-λ(v)(v ∗)⩾c || V -V ∗ || 2 L 1(ω)对于某些C>0。证明依赖于两个衍生物的概念进行形状优化:参数衍生物和形状衍生物。我们使用参数导数来处理径向竞争者,并形成衍生物来处理球的正常变形。然后建立二分法,以将结果扩展到所有其他电位。我们开发了一种处理径向分布的新方法和一个比较原理,以处理球在球处的二阶形状衍生物。最后,我们在这种情况下添加了有关二阶形状衍生物的强制性规范的一些评论。
图 1:(a) 受限玻尔兹曼机 (RBM) 架构由一个可见输入层和一个二进制值隐藏层组成;对于给定的配置 (v, h),参数 (a, b, W) 用于定义能量函数 E 和相关的类玻尔兹曼概率密度 P。(b) 例如,RBM 可以在一组手写数字上进行训练,然后用于生成新的真实数字;为此,数字图像被展平为一维二进制向量 v(k),其中 1 和 0 分别对应数字和背景像素。(c) 配置相互作用 (CI) 方法将分子的波函数展开为激发斯莱特行列式的线性组合,可以表示为一种一维二进制图像。 (d) 本研究中提出的 CIgen 算法以迭代方式训练 RBM 在波函数当前近似中的行列式分布上,然后通过生成新的贡献来扩展它。
许多量子计算和通信协议 ( 1, 2 ) 的一个关键要求是将特定的光量子态作为信息处理的资源。下面,我们将关注传播光束的量子态,它可以通过光子计数或零差检测来分析,零差检测测量信号态与具有相对相位 θ 的强参考光束之间的干涉。这可以测量一个称为电场“正交分量”的物理量,与算符 ˆ x θ = ˆ xcosθ + ˆ psinθ 相关,其中 ˆ x 和 ˆ p 是正则共轭场可观测量。算符 ˆ x 和 ˆ p 类似于粒子的位置和动量,它们通常被称为“量子连续变量”(QCV)。根据海森堡不等式,它们不能以无限的精度同时确定,所以一般不能为电场定义一个适当的相空间密度Π(x, p)。然而,可以定义一个准分布W(x, p),称为维格纳函数,其边际函数产生概率分布P(xθ)。通过测量几个θ值的分布P(xθ),可以重建维格纳函数;这个逆过程称为量子层析成像(3)。
本文旨在对当前分化模型进行全面的理论分析。我们利用潜在空间中的schr odinger桥的不同模型引入了一种新颖的生成学习方法,作为该领域中理论上的框架。我们的方法是从编码解码器架构的预训练开始,该数据源自可能与目标分布不同的分布,从而通过利用预先存在的大型模型来促进大型样本量的适应。随后,我们利用Schr odinger桥框架在潜在空间内开发了一个不同的使用模型。我们的理论分析涵盖了通过潜在的Schréodinger桥梁消化模型来建立学习分布的端到端错误分析。特别是我们控制生成的分布与目标分布之间的二阶Wasserstein距离。此外,我们获得的收敛速率是尖锐的,有效地减轻了维度的诅咒,从而对盛行的分歧模型提供了强大的理论支持。
摘要:首次考虑具有恒定延迟的非线性Schrödinger方程。这些方程是具有立方非线性的经典schrödinger方程的概括,而更复杂的非线性schrödinger方程包含功能任意性。从物理的角度来看,考虑了数学物理学非线性方程延迟出现的可能原因。为了构建精确的解决方案,使用了相关方程解的结构类比。获得了具有延迟的非线性schrödinger方程的新精确解,这些方程在基本函数或四函数中表示。还发现了一些具有广义分离变量的更复杂的解决方案,这些解决方案是通过普通微分方程的混合系统描述的,而无需延迟或延迟的普通微分方程。这项工作的结果对于开发具有延迟的非线性schrödinger方程所描述的新数学模型可能很有用,并且给定的精确解决方案可以作为旨在评估数值方法准确性的测试问题的基础,以评估非线性偏差方程与延迟集成非线性偏差方程。