二氧化碳去除(CDR)技术,这些技术依赖于被动光合作用过程,以从大脑中去除碳,并随后稳定和隔离生物质碳。2特定的cally,BICRS技术必须(1)使用生物质从大气中删除CO 2,(2)将Co 2地下或长寿命的产品存储,并且(3)对 - 理想地促进 - 粮食安全,农村生计,生物 - versity保存和其他重要值。2相对于直接捕获技术,BICRS技术要求在电力和热量形式的能量降低能量,这使CO 2捕获和稳定的成本显着降低。3领先的BICRS技术包括气体阳离子,热解,燃烧,厌氧挖掘,发酵和生物质埋葬。4鉴于气候变化的紧迫性,社会需要BICRS解决方案,这些解决方案以最小的风险迅速扩展。在此,我们证明了co 2捕获和封存作为一种新的BICRS技术途径的第一个时间堆肥,并有潜力通过实质性的二氧化碳来提供近期的碳去除。堆肥与所有BICRS技术一样,从光合作用的生物量中的Co 2Xation开始,然后是各种形式的生物量产品的临时碳存储,如图1。堆肥利用自然发生的微生物
新型的二氧化碳去除(CDR)技术已经看到了第一波部署,这是通过自愿碳市场和特定支持政策的投资驱动的。为了维持这种势头,迫切需要一条可靠的长期政策路径,以通过死亡山谷领导去除技术,并提高足够的能力以将全球变暖限制在2°C以下。将去除液集成到碳合同市场中已被广泛讨论为潜在的选择。即使诸如欧洲排放交易系统(EU ETS)等市场的当前津贴价格仍然大大低于撤离成本,整合和上涨津贴价格的前景可能会增加投资者的长期确定性。更重要的是,集成也将有助于找到排放和去除的有效组合。迄今为止,尚不清楚如何确切地进行这种集成。我们分为三个部分解决此差距。我们(1)以经济期望的长期监管框架的形式表征了对去除的第一最好的愿景。我们(2)然后分析第一最好的含义-E。使用数值模型Limes -eu将永久性删除的直接和不受约束 - 将永久性删除的整合到欧盟的碳合规市场中。在我们的基本情况下,到2050年,我们每年都会发现超过60吨的CDR进入市场,从而大大降低了津贴价格。这是整合的一般成本效益的基础。然而,CDR成本和分散法规的高度不确定性引起了减弱和过度生物量使用的风险,需要通过第二种最佳测序方法来考虑这一点。因此,(3)基于降低风险意外事件,该路径将其拆除到EU ETS中,这些途径是进入后续阶段的前提。
在南极的表面下方是数十万年来大气组成的变化的完美记录。这个独特的档案使我们能够在1950年代现代大气监测开始之前重建大气CO 2,准确率仅为百万分之几。数据揭示了大气中的自然变化在冰川间冰期,千禧一代和百年纪念尺度上,因此随着时间的推移提供了可靠的辐射性重建。此外,可以以足够精度测量CO 2的稳定同位素,以在这些相同的时间尺度上量化CO 2的源和下沉。组合,CO 2的浓度和同位素组成使我们能够约束过去的气候灵敏度(即气候如何响应CO 2的变化)和碳气候反馈(即碳循环如何响应气候变化的碳循环))。
1在2023年5月底与2024年之间,Platts CRC(删除信用额度)评估率为8%,在2024年5月31日在12.4 $/ tco2e进行评估;相比之下,基于Platt的基于自然的避免价格评估在同一时期占其价值的38%,终止于2024年5月31日以3.8 $/tco2e结束。platts CRC反映了最可及时的删除信用额的日常,最竞争的价值。
“该法”是指2008年《能源法》; “受控位置”具有该法案的第17(3),第17(3A)(b)和第17(b)条中的含义; “评估术语”是指第6条(延长评估术语)和第8条(许可终止))在附表1的第2部分中指定的期限; “半年是指每年的1月1日至6月30日的期间,以及任何年的7月1日至12月31日的期间;“注射”是指注入二氧化碳流入存储地点;“许可区域”;“许可区域”具有第3款中的含义为第3款;“被许可人”是指持有人(或所有人的定义者),或者是一项定义的一部分持有人(或者是计划的一部分),或者是计划的一部分,或者是计划的一部分(或者)。授权;“操作术语”具有第7条(1)条的含义(运营期和关闭后期); “石油”包括任何矿物油或相对碳氢化合物和天然气在其自然状态中存在的天然气,但不包括煤炭或沥青页岩或其他分层沉积物,可以通过破坏性蒸馏提取油。 “关闭后期”具有第7(2)条(操作期限和关闭后期)的含义; “法规”是指二氧化碳(LICENSI NG等)的存储2010年条例; 1
NOAA 海洋和大气研究办公室 (OAR) 1 NOAA 太平洋海洋环境实验室,华盛顿州西雅图 2 NOAA 海洋酸化计划,马里兰州银泉 3 NOAA 全球监测实验室,科罗拉多州博尔德 6 NOAA 大西洋海洋和气象实验室,佛罗里达州迈阿密 9 NOAA 国家海上资助办公室,马里兰州银泉 10 NOAA 地球物理流体动力学实验室,新泽西州普林斯顿 17 NOAA 全球海洋监测和观测计划,马里兰州银泉 18 NOAA 气候计划办公室,马里兰州银泉 NOAA 国家海洋渔业局 (NMFS) 4 NOAA NMFS 西北渔业科学中心,华盛顿州西雅图 13 NOAA NMFS 栖息地保护办公室,马里兰州银泉 14 NOAA NMFS 阿拉斯加渔业科学中心,阿拉斯加州朱诺 16 NOAA NMFS 科迪亚克实验室,阿拉斯加州科迪亚克 NOAA 国家海洋局 (NOS) 17 NOAA 国家沿海海洋科学中心,马里兰州银泉市 NOAA 国家环境卫星、数据和信息服务 (NESDIS) 8 NOAA 国家环境信息中心,马里兰州银泉市 11 NOAA 国家环境信息中心,密西西比州斯坦尼斯航天中心 海洋和大气事务副部长办公室 19 NOAA 通信部门,华盛顿特区 NOAA 附属机构 5 华盛顿大学气候、海洋与生态系统研究合作研究所,华盛顿州西雅图 7 迈阿密大学海洋与大气研究合作研究所,佛罗里达州迈阿密 12 马里兰大学地球系统科学跨学科中心卫星地球系统研究合作研究所,马里兰州学院公园市 15 NOAA 国家海洋赠款办公室弗吉尼亚海洋赠款学院项目研究员,马里兰州银泉市
目前,MCDR可能在加拿大缓解策略中发挥的潜在作用尚不清楚。政策制定者使用综合评估模型(IAMS)来洞悉经济和技术上可行的途径以实现气候目标,例如到2050年达到净零目标。在最新的政府间气候变化小组(IPCC)评估报告(AR6)中,所有330个能够实现1.5度摄氏摄氏度目标的场景包括CDR的形式,但这些场景均未涉及MCDR。尽管有进展,但与陆基方法相比,MCDR方法在建模中的表示仍然不足。15鉴于IAM在促进有关不同干预措施相对疗效的政策讨论中至关重要的作用,因此迫切需要将广泛的MCDR技术纳入模型中,以避免过分简化和过分依赖奇异技术。16例如,最近的两项研究引入了MCDR技术,例如直接海洋捕获和海洋碱度增强,结果表明MCDR的作用有限。17
本研究旨在制备基于聚醚酰亚胺 (PEI)-硅橡胶二元共混物的纳米复合材料,其中掺入了不同含量的纳米二氧化钛颗粒。纳米复合材料采用双螺杆挤出机通过熔融共混工艺制备。借助热重分析仪 (TGA) 和动态力学分析仪 (DMA) 研究了所开发的纳米复合材料的热性能。使用扫描电子显微镜 (SEM) 分析纳米复合材料的形态特性。通过万能试验机 (UTM) 评估了纳米复合材料的机械性能(拉伸强度、拉伸模量、断裂伸长率、冲击强度)。机械测试结果表明,在共混聚合物基质中添加 1 phr 纳米钛时,拉伸强度增加 35%,拉伸模量增加 3%,冲击强度增加 41%。含有 1 phr 纳米钛的纳米复合材料的热稳定性最高。 DMA 结果表明,在 50°C 下,与纯共混体系相比,含有 1 phr 纳米钛的纳米复合材料的储能模量增加了 69%。SEM 显微照片清楚地表明,与其他纳米复合材料相比,含有 1 phr 纳米钛的纳米复合材料具有最小的域尺寸。这可能是由于 1 phr 纳米钛在聚合物基质中均匀分散,随后与聚合物填料相互作用相当好。