直到 20 世纪 60 年代和 70 年代,人们才开始详细考虑空气质量问题,并制定了基于燃烧的废物管理工厂的管理策略。1976 年意大利发生的一次工业事故提高了人们对二恶英潜在影响的认识,随后荷兰的研究将废物焚烧与二恶英的形成联系起来,导致焚烧厂与不良环境结果密切相关。这推动了欧洲和北美的立法变革,而日本的大量小型工厂继续因二恶英和其他污染物排放而产生问题——直到 20 世纪 90 年代末,日本的政策终于反映了废物焚烧和二恶英形成之间的已知联系,以及工厂规模和烟气洗涤如何带来显著的好处。
● 焚化炉的排放水平基于理想的计算机建模。现实世界的排放测试非常有限,在许多情况下,每年仅进行几次。这令人担忧,表明理论模型可能无法让我们全面了解实际排放量。● 例如,多伦多附近的两座焚化炉之一是达勒姆约克能源中心,建于过去十年。然而,自焚化炉开始运行以来,该设施就释放了二恶英,并且发生了多起二恶英超标事件,其中一次二恶英水平几乎是允许限值的 14 倍。
- 4 - CSIR-NIIST 的“Burn-hut”中确定的二恶英排放因子为 39.81 μg PCDD-F TEQWHO/ 吨废弃物燃烧量。 因此,估计排放的二恶英 = 72 毫克毒性当量 (TEQ)。 WHO/FAO 规定人类每月二恶英最大耐受摄入量为 70 皮克 TEQ/kg 体重(65 公斤重的人每年可耐受摄入量为 54.6 纳克 TEQ)。虽然产生的二恶英中只有很小一部分通过食物链到达人类,但产生的二恶英总量足以超过 72 x 10-3 / 54.6 x 10-9 = 130 万人的每年可耐受摄入量
我们的解决方案旨在满足您的需求——我们提供安全的填埋和深井注入服务,我们位于美国德克萨斯州亚瑟港的最先进的焚烧设施获准处理 RCRA 危险废物、TSCA PCB 和二恶英废物,并获准接收 CERCLA 废物。所有威立雅解决方案均经过科学验证,完全符合 EPA 1 标准。
Co-author, “Assessing CaMPARI as new approach methodology for evaluating Neurotoxicity,” NeuroToxicology, 97, 109-119 (2023) Co-author, “Environmentally relevant uptake, elimination, and metabolic changes following early embryonic exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in zebrafish,” Chemosphere , 310,136723(2023)共同作者,“ AHR信号的适当调节对于在胚胎鱼脑中建立神经连通性和少突胶质细胞前体细胞的发育是必要的,分子神经科学的边界,15,1032302(1032302)(2022)的共同构造,对神经的调节型,并施加了对神经的范围,并促进了神经元素的范围。到全氟辛烷,” Biorxiv,2022-09(2022)共同作者,“ 2、3、7、8-四氯二苯并 - dioxin破坏了内脏和眼脉管造成的发展”
我们的一般服务包括金属分析(GFAA、CCVA、ICP/OES、ICP/MS);湿化学(包括微生物学);有机物和半挥发性有机物(GC;GC/MS;LC、LC/MS;LC/MS/MS、GC/MS/MS 离子阱);空气分析(大量 1 L 和 6 L 苏马罐);二恶英和呋喃(五台高分辨率仪器);以及微量元素(CHNOS 分析仪和卤素)。我们还提供大容量注射器、固相萃取器、大型冷冻干燥机和小型移动实验室等附加功能。
Thornton 博士是《潘多拉的毒药:氯、健康和新环境战略》(麻省理工学院出版社 2000 年出版)一书的作者,英国科学杂志《自然》称该书“是一本具有里程碑意义的著作,任何想了解氯化学对环境和健康的危害的人都应该阅读它”。从 20 世纪 80 年代末到 90 年代中期,Thornton 先是担任绿色和平组织美国和国际毒物运动的研究分析员,后来担任研究协调员。在那里,他撰写了有关有机氯、二恶英、乳腺癌、废物焚烧、风险评估和预防原则的开创性报告和文章。1995 年,Thornton 博士加入哥伦比亚大学地球研究所,在那里他撰写了《潘多拉的毒药》,并将其研究扩展到可能被有毒化学物质破坏的生物系统的基础科学。他还与他人共同撰写了文章和美国公共卫生协会决议,发起了一场运动,呼吁禁止将聚氯乙烯 (PVC) 产品用于医疗用途,因为它们在医疗废物焚化炉中二恶英的形成中起着重要作用。桑顿博士曾在美国国会、环保署科学顾问委员会、美国科学促进会、美国公共卫生协会、国际联合委员会以及各种其他组织和听众面前发表演讲。他的作品发表在许多科学期刊上,包括《美国国家科学院院刊》、《基因组年度评论》
3.8 装有危险废物或材料(有毒物质、传染性物质、害虫防治产品、二恶英或多氯联苯除外)的气雾剂容器在正常使用下,当内容物和推进剂被排空到最大实际程度时(即喷雾装置没有缺陷,并成功排出内容物和推进剂),该容器就是空的。含有剩余材料的气雾剂容器(包括因喷嘴堵塞、阀门损坏或推进剂损失而剩余的材料)必须作为危险废物进行管理。未空且被收集用于废物管理的气雾剂罐必须在注册的地点清空,并且需要在运营计划中概述具体的清空程序,包括:装有推进剂的罐子和容器的处理方法、清空过程中收集的残留物以及与推进剂释放相关的排放物。此外:
污染物检测需要非常灵敏且具有选择性的仪器和方法,例如色谱法和质谱法。色谱法可以分离分子以识别特定分子(选择性),而质谱仪则可以检测微量物质(低至十亿分之一)。Cotecna 实验室配备了创新技术,可以检测食品中的各种污染物,例如:> 农药残留> 霉菌毒素> 重金属> 工艺污染物(3-MCPD、丙烯酰胺、呋喃等)> 持久性有机污染物(持久性有机污染物、异丙醇、二恶英、多氯联苯等)> 药物> MOSH/MOAH(矿物油的饱和烃或芳香烃)> PFAS/PFOS(全氟和多氟烷基物质,它们是环境中的持久性污染物,可以迁移到食品和饲料中)。