1a人类TDP-43(HSTDP-43)的示意图:NTD-氨基末端结构域,NLS-核定位信号,RRM-RNA识别基序,LCR-low复杂性区域;在RRM1中类似PIASE的序列和假定的聚集和RRM2中的纤维化启动序列被证明,并以粉红色显示顺式P225。1B HSTDP-43 NTD结构域与斑马鱼Farp1的Ferm结构域以及Dali产生的人类Bag6的泛素样域。1C的HSTDP-43残基的溶解倾向为绘制的TDP-43序列绘制的脂质结合区域无序;预测的脂质结合区域无序表示为黑色矩形,并根据HSTDP-43氨基酸序列编号。重组的1d噻铁黄素T荧光在37°C或65°C下在胆固醇(C)和磷脂酰胆碱(PC)的情况下在生理温度下或在65°C下在生理温度下或65°C下在生理温度下或65°C下在生理温度下孵育的HSTDP-43构建体和对照样品;误差线表示来自一式三份实验的平均值的标准误差。1E HSTDP-43 RRM1和小鼠TDP-43 RRM2主题达利生成的叠加到HSCYP33 RRM域的3D模型; MMTDP43 RRM2顺式Proline P225标有粉红色的星号。1f欧米茄生成的人,小鼠,鸡肉和鱼Farp1和TDP-43的多个序列比对,以及Zebra Fish Ferm域的二级结构元素相对于多个序列对齐信息的二级结构元素的二级结构元素;白色和黑色钻石分别代表了TDP-43和FARP1中的假定或实验确认的脂质结合残基。1G人和小鼠CYP33 RRM和PPIASE结构域的多个序列对齐,以及人和小鼠TDP-43 RRM1和RRM2基序; HSTDP-43 RRM1或HSCYP33 PPIASE域的二级结构元素的ESPRIPT生成的渲染相对于多个序列比对信息; TDP-43 rrm2中的顺式脯氨酸用粉红色的星号表示,并且在所有排列序列中,粉红色矩形突出显示了该位置。 CYP33参与底物结合的残基用白色球表示,其中一些与肽基prolyl prolyl cis-Trans异构化的HSCYP33残基由黑色球体表示,而催化HSCYP33 S239不包括由于空间限制而包括。
心脏扩散MRI(DMRI)是一种新兴的心肌表征的新兴方法,并且不需要对比剂。当前,最常见的DMRI方法是DTI。1已应用于一系列病理中,包括肥厚性心理 - 肠道 - 2,3张扩张的心肌病,4个梗塞5和杏仁症,6和主动脉瓣狭窄后的重塑7;心肌病理学的典型标志是平均扩散率(MD)的增加和散布各向异性(FA)的降低。dTI使用单个扩散张量来表征扩散过程,该扩散过程代表每个成像体素中组织的平均扩散特征。因此,它不能说明可能是由于限制,结构各向异性无序或具有异质密度的组织可能导致的非高斯扩散。8,9富度热量,每当组织是异质或复杂的,它的敏感性和特异性都较差,从而导致检测和区分涉及多个具有不同方向和特征的细胞群体的过程有限。10,11
氯磺酸和油酸是使无序碳纳米管(CNT)转化为精确且高度功能的形态的理想溶剂。目前,使用挤出技术处理这些溶剂,由于化学兼容性而导致并发症,这限制了设备和底物材料选项。在这里,我们提出了一种新型的酸性溶剂系统,基于具有低腐蚀性的甲磺酸或p-硫苯磺酸,在浓度高达10 g/升(≈0.7体积%)时,它形成了CNT的真实溶液。该溶剂系统的多功能性是通过向常规制造过程(例如插槽模具涂层,溶液旋转连续纤维和3D打印气凝胶)进行的。通过连续的插槽涂层,我们在工业相关的生产速度下实现了最先进的光电性能(83.6%T和14 ohm/sq)。这项工作为CNT的可扩展处理中的实用和高效的手段建立了具有适合各种应用的属性的高级材料。
摘要:弗朗西斯·克里克(Frances Crick)在1988年说:“在物理学中,他们有法律,在生物学中,我们有小工具”。生物设计和合成生物学的新兴领域寻求应用物理定律来创建新的小工具或改善旧小工具。生物聚合物折叠中最大的不稳定力是从无序展开状态到有序折叠状态的不可避免的配置熵损失。在进化中最小化的能量是通过在折叠状态下使用特定函数所必需的最小顺序来最小化的一种方式。在这里,我将首先概述我们在设计电子传递酶时引入这种疾病的实验;其次,我们对由表面蛋白质增压引起的极端疾病的利用来创建高信号传感平台,我们用来检测化学和生物恐怖武器,第三,我们使用增压来创建对炎症生物标志物的可植入生物传感器,以对癌症和癌症和Vovid19都很重要。
KRAS基因G12突变与多种癌症有关。采用多重复制高斯加速分子动力学(MR-GaMD)模拟研究了G12C、G12D和G12R突变引起的开关结构域构象变化。自由能图表明,与GTP结合的WT KRAS相比,G12C、G12D和G12R诱导的能量状态更高,使开关结构域的构象更加无序,从而干扰KRAS与效应分子的结合。基于MR-GaMD轨迹的动力学分析表明,G12C、G12D和G12R不仅改变了开关结构域的灵活性,而且影响了其运动行为,这表明这三个突变可用于调控KRAS的活性。相互作用网络分析验证了GTP与开关S Ⅰ相互作用的不稳定性在开关结构域的高度无序状态中起着重要作用。此项工作有望为深入了解KRAS的功能提供有用的信息。
摘要。- 凋亡是一种源自鸡贫血的小分子量蛋白,它可以诱导转型细胞和肿瘤细胞的凋亡,并使原发性和未转化的细胞不受伤害。apoptin的细胞定位取决于其自身的磷酸化状态和细胞类型。在肿瘤细胞中,植酸化的凋亡可以进入细胞核,并导致细胞凋亡。而,在正常细胞中,apoptin主要存在于细胞质中。apoptin作为细胞中的无序蛋白质,与细胞信号途径中的许多蛋白质相互作用,诱导肿瘤细胞凋亡。尚未完全阐明凋亡诱导的凋亡的特定机制。因此,apoptin已成为潜在的抗癌剂。这种情况总结了我们的实验室中阿poptin的研究结果,并揭示了由Oncolytic病毒载体在多种肿瘤细胞和小鼠模型上表达的Apoptin的特定抗抗毒素机制。
原理:获取人类神经回路的一个关键障碍是获取高质量的人脑组织。器官活检为许多人体器官系统提供了有价值的信息,但除了检查或切除肿瘤肿块外,很少在脑部进行活检,因此大多数活检对于研究正常的人类大脑结构都有问题。一种尝试是使用由人类细胞制成的脑器官,但目前,它们并不接近脑组织的结构(例如,不存在皮质层)。一种直接的方法是绘制神经外科手术后获得的人类标本中的细胞和回路,以用于神经系统疾病,在这种疾病中,皮质的某些部分会被丢弃,因为它们会阻碍进入病理部位。我们假设,神经外科手术的副产品——人脑组织——可以用来研究正常的——以及最终紊乱的——人类神经回路。
在本演讲中,我们将讨论我们小组在光子晶体的拓扑方面的进步,将光子合金的概念引入了非周期性拓扑材料。这些新的无序材料表明,在2D光子晶体中将非磁化和磁化成分相结合可以导致非平凡的拓扑和边缘状态,其特征在于反射阶段的绕组。值得注意的是,由于时间反转对称性的局部分解,我们观察到非互联性手性边缘状态。此外,我们提出了具有零标量介电常数和独特的磁性特性,具有零决定因素的独特磁性特性。gdzims非常适合产生复杂的光学脉冲,称为时空涡旋脉冲,与散装dirac点相关。我们的关键发现是GDZIMS的稳定性源于拓扑过渡点的独特关系,揭示了零反射 - 折射率光子学,拓扑光子学和奇异光学的连接。
摘要:快速离子导体,也称为实心电解质,是发展高性能全稳态电池的关键组成部分。常规锂固体电解质受到LI +转运高能屏障的低离子电导率的限制。通过通过在原子,纳米和中尺度引入局部疾病来削弱锂离子与协调的阴离子的相互作用,从而实现了促进快速运输的最新进展。难以在局部 - 内部增强离子导体的相干表征上,这是由修改的结构框架引起的,该框架由有序的远程网络中的高度混乱的本地结构组成。本综述概述了一种实验方法,用于系统地探测材料结构,离子动力学和离子传导之间的关系,并在固态NMR引导下。在原子,纳米和中尺度上,强调了我们在局部 - 凝集增强离子导体方面的工作的例子,以鼓励将来的研究进一步优化固体电解质的特性,以在广泛的技术应用中优化。