埃及伊蚊是多种病毒的主要载体,包括登革热病毒、基孔肯雅病毒和寨卡病毒。蚊媒疾病的经济负担、传统控制策略的相对失败以及对杀虫剂的抗药性发展,都促使人们开始对埃及伊蚊进行基因改造。因此,一个关键的双性基因 ( Aedsx ) 调节性别分化,并交替剪接形成雄性和雌性特异性转录本 ( Aedsx M 和 Aedsx F )。CRISPR/Cas9 技术被用于性别特异性破坏雌性特异性亚型 Aedsx F1 和 Aedsx F2 ,这两种亚型均仅在雌性蚊子中表达。在发育阶段以 dsx F 为靶标已导致成年雌性出现各种表型异常。 dsx F1 和 dsx F2 微注射组中记录到成年突变表型的发生率在 29% 到 37% 之间,同时翅膀大小和喙长异常,进食前和进食后卵巢尺寸减小。这些发现与 G o 雌性繁殖力降低有关,其中 Aedsx F1 和 Aedsx F2 组的繁殖力降低率在 23% 到 31% 之间。此外,与野生型相比,G1 代的孵化抑制率为 28% 到 36%。总体而言,这些结果表明 Aedsx F 破坏已导致多种雌性性状破坏,包括雌性生育力下降,这可能直接或间接与生殖及其疾病传播能力有关。所有这些发现都表明 CRISPR 能够按照预期改变发育途径,因此这种方法可能为我们提供了性别比例失调系统作为管理该载体的遗传控制方法的基础。2022 作者。由 Elsevier BV 代表沙特国王大学出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
摘要 — 拉伸前腿 (SFOL) 脉冲是一种高精度测距设备 (DME) 脉冲,旨在支持全球导航卫星系统中断期间飞机的替代定位和导航。为了方便使用 SFOL 脉冲,最好使用已经部署的传统 DME 来传输 SFOL 脉冲,而不是当前的高斯脉冲,只需通过软件更改即可。当尝试在传统 DME 中传输 SFOL 脉冲时,最大的挑战是传输单元中的脉冲整形电路和功率放大器引起的脉冲形状失真,使得原始 SFOL 脉冲形状不再保留。本信提出了一种基于逆向学习的 DME 数字预失真方法,并展示了基于商业传统 DME 的测试台成功传输的 SFOL 脉冲,该 DME 旨在传输高斯脉冲。
摘要 — 拉伸前腿 (SFOL) 脉冲是一种高精度测距设备 (DME) 脉冲,旨在支持全球导航卫星系统中断期间飞机的替代定位和导航。为了方便使用 SFOL 脉冲,最好使用已经部署的传统 DME 来传输 SFOL 脉冲,而不是当前的高斯脉冲,只需通过软件更改即可。当尝试在传统 DME 中传输 SFOL 脉冲时,最大的挑战是传输单元中的脉冲整形电路和功率放大器引起的脉冲形状失真,使得原始 SFOL 脉冲形状不再保留。本信提出了一种基于逆向学习的 DME 数字预失真方法,并展示了基于商业传统 DME 的测试台成功传输的 SFOL 脉冲,该 DME 旨在传输高斯脉冲。
用于空间领域感知应用的加速 AI 驱动大气预测 丹尼·费尔顿 诺斯罗普·格鲁曼公司 玛丽·艾伦·克拉多克、希瑟·凯利、兰德尔·J·阿利斯、埃里克·佩奇、杜安·阿普林 诺斯罗普·格鲁曼公司 摘要 太空激光和监视应用经常受到大气效应的影响。气溶胶、云和光学湍流引起的大气衰减和扭曲会产生有害影响,从而对任务结果产生负面影响。2019 年 AMOS 会议上简要介绍的一篇论文介绍了 2017 年在哈莱阿卡拉峰安装的地面仪器。这些仪器仍在积极收集数据,它们正在提供前所未有的空间环境实时表征,包括精确的大气传输损耗。虽然实时测量是理解和表征空间环境的第一步,但仅靠它们是不够的。为了优化任务规划,许多应用都需要对空间环境进行准确的短期大气预测。虽然大气预报并不是什么新鲜事,但最近随着 21 世纪人工智能 (AI) 技术的应用,大气预报的技能得到了极大提升。这些技术是高性能计算 (HPC) 和深度学习 (DL) 的结合。本演讲的主题是使用来自地面大气收集系统的 TB 级数据训练预测模型,并使用图形处理单元 (GPU) 加速其训练和推理的能力。本研究侧重于预测的三个时间尺度。这些时间尺度包括短期(0 到 60 分钟)、中期(1 小时到 3 小时)和长期(3 到 48 小时)。这些时间尺度代表激光和/或监视应用和任务的各种决策点。在短期预测情况下,多种 DL 技术应用于从光学地面站 (OGS) 收集的本地数据。这些 DL 技术包括使用 U-Net 卷积神经网络和多层感知器 (MLP) 和随机森林 (RF) 模型的集合。 MLP 用于从激光云高仪和红外云成像仪 (ICI) 等仪器收集的点数据。对于中间时间尺度,卷积长短期记忆 (LSTM) 网络和 U-Net 均使用来自 NOAA 地球静止卫星云图集合的图像进行训练。最后,组合 U-Net 和自动编码器神经网络用于训练由 HPC 数值天气预报 (NWP) 模型模拟的大气预测器以进行长期预测。NWP 会产生许多 TB 的数据,因此,使用这些神经网络是优化其预测能力的理想选择。本研究利用了多种 HPC 资源。其中包括由四个 NVIDIA Tesla V100 GPU 组成的内部 GPU 节点以及毛伊高性能计算中心 (MHPCC) 的资源。结果表明,在几乎所有情况下,这些预测技术都优于持久性,而且偏差很小。使用 HPC 和 DL 推理实时进行预测的能力是未来的重点,将在会议上报告。1. 简介大气衰减和失真降低了太空激光和监视应用的功效。特别是,云层可以部分或完全遮挡目标,并阻止或要求降低光通信系统的数据速率。但是,通过准确表征和预测大气影响,可以减轻许多负面影响。本研究的目的是开发和完善一种最先进的大气预测系统,该系统可生成高分辨率的大气衰减预测,以支持太空激光和监视应用的决策辅助。为了实现这一目标,HPC 和 AI 的进步与数 TB 的高分辨率地面和太空大气数据集合相结合。多种 HPC 资源用于处理本研究所需的地面和卫星数据,并使用四个 NVIDIA Tesla V100 GPU 加速 AI 预测技术的训练和推理。该技术用于进行多时间尺度大气预测:1 小时预测、2 小时以上预测和 48 小时预测。最长 1 小时;最长 2+ 小时;最长 48 小时。最长 1 小时;最长 2+ 小时;最长 48 小时。
1电子显微镜实验室和国际量子材料中心,北京大学,北京大学,北京大学2北京国家2北京国家冷凝物质物理实验室,中国科学院物理研究所,北京学院,北京学院100190,100190,中国3日) PRESTO, Kawaguchi, Saitama 332-0012, Japan 5 Nanostructures Research Laboratory, Japan Fine Ceramic Center, Nagoya 456-8587, Japan 6 WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan 7 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China 8 Interdisciplinary Institute of Light-Element中国北京大学北京大学量子材料和研究中心,北京大学
摘要以其几何自由度和准确性而闻名的激光粉床融合(LPBF)以及以高堆积速率而闻名的基于喷嘴的激光金属沉积工艺(LMD)的组合具有减少大型金属零件的添加性制造时间的巨大潜力。对于LPBF-LMD混合过程链的工业应用,有必要研究LMD过程对LPBF底物的影响。此外,构建板材还对沿添加剂制造工艺链的失真发生有很大的影响。在文献中,钢制构建板经常用于Inconel 718的基于激光的添加剂制造过程中,因为可以确保良好的冶金结合,同时降低制造板的生产和恢复成本。本文研究了由LMD材料沉积引起的变形以及沿混合添加剂制造工艺链的构建板材料的影响。双悬臂是由LPBF制造的,随后将一层放置在LMD中。失真均在井期和热处理后的状态下测量。确定不同LMD孵化策略对失真的影响。实验是使用镍基合金inconel 718进行的。结果显示了LMD路径策略对失真的显着影响,较短的工具路径会导致失真较少。热处理后的剩余失真在很大程度上取决于构建板的材料。
本文提出了一个改进的数学模型,用于计算两个对齐表面网格的失真向量。在具有特殊数学条件(例如尖角和小半径)的现有模型上进行基准测试时,模型显示出更好的准确性。该模型被实施到已发达的失真补偿数字工具中,并应用于工业组件。该组件由Inconel 718制成,由激光粉末融合3D印刷技术生产。使用已开发的数学模型预先扭曲其原始几何形状,将数字工具用于补偿原始设计的几何形状。对于在构建过程中受到屈曲的有挑战性的薄结构,工业组件的失真从约±400μm减少到±100µm。
摘要以其几何自由度和准确性而闻名的激光粉床融合(LPBF)以及以高堆积速率而闻名的基于喷嘴的激光金属沉积工艺(LMD)的组合具有减少大型金属零件的添加性制造时间的巨大潜力。对于LPBF-LMD混合过程链的工业应用,有必要研究LMD过程对LPBF底物的影响。此外,构建板材还对沿添加剂制造工艺链的失真发生有很大的影响。在文献中,钢制构建板经常用于Inconel 718的基于激光的添加剂制造过程中,因为可以确保良好的冶金结合,同时降低制造板的生产和恢复成本。本文研究了由LMD材料沉积引起的变形以及沿混合添加剂制造工艺链的构建板材料的影响。双悬臂是由LPBF制造的,随后将一层放置在LMD中。失真均在井期和热处理后的状态下测量。确定不同LMD孵化策略对失真的影响。实验是使用镍基合金inconel 718进行的。结果显示了LMD路径策略对失真的显着影响,较短的工具路径会导致失真较少。热处理后的剩余失真在很大程度上取决于构建板的材料。
选择性激光熔化(SLM)是添加剂制造技术之一,可以使用3D CAD软件逐层构建复杂的结构模型。但是,更高的研究成本几乎无法通过传统方法进行,解决问题的最佳方法是使用仿真软件。本文旨在通过剪辑加成式(SA)软件找到具有最小失真和最低残留应力的样品的最佳处理参数组合。在最佳处理参数下的仿真结果,导致失真和残留应力的最小值是扫描功率与300W,扫描速度为1.3m/s的组合,扫描速度,扫描间隔,一个点直径(0.12mm)(0.12mm)(0.12mm)(0.12mm)和热处理持有时间为4H。此外,计算结果还提供了一种新的研究方法,以验证不同加工参数对SLM制造的Inconel 718合金的影响。
这是作者的同行评审并被接受的稿件。但是,一旦经过编辑和排版,记录的在线版本将与此版本不同。请以 DOI 引用本文: