ISIS Castro Cabrera。 基于二硫化物交换化学的环氧玻璃二聚体材料:应力松弛的实验研究和建模 - 纳米纤维纤维素增强的复合材料的应用。 化学科学。 de toulon大学,2021年。 英语。 nnt:2021Toul0010。 电话-04563706ISIS Castro Cabrera。基于二硫化物交换化学的环氧玻璃二聚体材料:应力松弛的实验研究和建模 - 纳米纤维纤维素增强的复合材料的应用。化学科学。de toulon大学,2021年。英语。nnt:2021Toul0010。电话-04563706
基于半导体过渡金属二分法的晶体管可以提供高载体的迁移率,强旋转 - 轨道耦合以及在量子接地状态下固有强的电子相互作用。这使它们非常适合在低温下用于纳米电子产品。然而,在低温温度下与过渡金属二甲基化金属层建立强大的欧姆接触非常困难。因此,无法达到费米水平靠近带边缘的量子极限,从而探测了分数填充的Landau级级别中的电子相关性。在这里我们表明,使用窗户接触技术可以在从Millikelvins到300 K的温度范围内创建与N型钼二硫化物的欧姆接触。我们观察到超过100,000 cm 2 v -1 s -1的场效应,在低温下的传导带中,超过3,000 cm 2 v -1 s -1的量子迁移率超过3,000 cm 2 v -1 s -1。我们还报告了在最低的双层钼二硫化物中,填充4/5和2/5的分数量子厅状态的证据。
氧[17-22],电化学氧化[23,24]和光化学氧化技术[25]已成为替代天然方法。 但是,这些方法具有重要的限制:底物必须是具有不愉快气味的硫醇。 这阻止了他们大规模的广泛使用。 最近,研究工作重点是探索替代试剂,这些试剂比硫醇具有无味和更稳定的优势。 这些替代方法包括氯化磺酰氯[26],磺酰基氢氮[27],二硫化碳[28]和硫酸钠(方案1)[29-32]。 在可用的替代方案中,硫酸钠特别有趣,因为它更稳定,更易于运输,并且广泛用于有机合成[33-37]。 使用亚硫酸钠作为建造二硫化物的起始材料时,通常需要将等效的还原剂引入等效的还原剂,例如PPH 3 [29],HI [30],HPO(OET)2 [31]或铁粉[32]或铁粉[32] 尽管已经进行了许多关于硫酸钠二硫化物合成的研究,但在不使用其他氧化还原试剂的情况下,开发了合成硫酸钠二硫化物的方法的发展仍然是一项具有挑战性的任务。氧[17-22],电化学氧化[23,24]和光化学氧化技术[25]已成为替代天然方法。但是,这些方法具有重要的限制:底物必须是具有不愉快气味的硫醇。这阻止了他们大规模的广泛使用。最近,研究工作重点是探索替代试剂,这些试剂比硫醇具有无味和更稳定的优势。这些替代方法包括氯化磺酰氯[26],磺酰基氢氮[27],二硫化碳[28]和硫酸钠(方案1)[29-32]。在可用的替代方案中,硫酸钠特别有趣,因为它更稳定,更易于运输,并且广泛用于有机合成[33-37]。使用亚硫酸钠作为建造二硫化物的起始材料时,通常需要将等效的还原剂引入等效的还原剂,例如PPH 3 [29],HI [30],HPO(OET)2 [31]或铁粉[32]或铁粉[32]尽管已经进行了许多关于硫酸钠二硫化物合成的研究,但在不使用其他氧化还原试剂的情况下,开发了合成硫酸钠二硫化物的方法的发展仍然是一项具有挑战性的任务。
抽象的急性白血病仍然是全球疾病的主要死亡原因,当前的化学治疗剂与幸存者的发病率显着有关。迫切需要对急性白血病的更好,更安全的治疗方法,但标准的药物开发管道却是冗长的,药物重新利用是一种有希望的方法。我们先前对FDA批准药物的抗白血病活性的药物评估,鉴定出用于治疗酒精ISM的二硫酸酯,作为候选命中型化合物。本研究评估了二硫兰氏菌对白血病细胞的生物学作用,并评估了其作为治疗策略的潜力。我们发现,二硫仑抑制了急性淋巴细胞和髓样白血病细胞系(n = 16)以及患者衍生的异种移植细胞的可行性(n = 16)。在治疗后数小时内,药物在白血病细胞中诱导的氧化应激和凋亡,并能够增强daunorubicin,etopotoside,topotecan,cytarabine和mitoxantrone化学疗法的影响。在将二硫兰素与奥拉诺芬(Auranofin)相结合后,该药物批准用于治疗类风湿关节炎,以前被证明会发挥抗血肿作用,在各种急性白血病细胞系中观察到了强和一致的协同作用,其机制基于增强的ROS诱导。急性白血病细胞比固体癌细胞系和非恶性细胞更敏感到二硫兰蛋白酶的细胞毒性活性。尽管目前正在针对固体癌症进行临床试验中的二硫兰氏素,但本研究为二硫兰氏菌对急性白血病治疗的潜力提供了证据。
我们将外延的概念扩展到了“扭曲外观”的制度,并在两个受相对方向影响的两个底物之间的表层晶体取向。,我们在两个去角质的六角钼二硫化物(MOS 2)的两个底物之间退火纳米厚的金(AU)纳米颗粒,其基础平面的不同方向具有相互扭曲的角度,范围为0°至60°。透射电子显微镜研究表明,当双层的扭曲角度很小(<〜7°)时,AU在顶部和底部MOS 2之间对齐。对于较大的扭曲角,Au只有一个小的不良对象,而底部MOS 2则与双层MOS 2的扭曲角差异大致变化。四维扫描透射电子显微镜分析进一步揭示了与扭曲的外交相关的au纳米虫的周期性应变变化(<|±0.5%|),与两个MOS 2扭曲层的Moiré注册表一致。e
在新时代的能源消耗和结构随着物联网(IoT)和人工智能的增长而发生了变化,数十亿分散的小工具和传感器的功率来源在全球范围内引发了人们的注意以保护环境。由于不可再生能源的使用量增加以及由此产生的环境损害,研究人员正在研究可以利用环境的替代能源系统。因此,通过使用未充分利用的自然废物能源(NGS),可以使用自给自足的小型电子系统。所使用的Ma terials的特征对NGS的工作效果有重大影响。在这方面,二硫化钼(MOS 2)是一种2D材料,是当今讨论的化合物之一,因为它的出色特征使其在各种应用中都有用。已经发表了许多有关MOS 2材料的进步和实施的研究论文,但本文将提供深入的概述。它提供了2D MOS 2纳米材料的主要特性的介绍和解释,从当前状态,属性和各种合成过程开始。后来,审查集中于MOS 2应用和能量收获的CAPA能力,并根据2D MOS 2纳米复合材料进行了对压电,底压和热纳米生成剂的全面研究。
在扭曲的双层系统中观察到的多样化和有趣的现象,例如石墨烯和过渡金属二核苷,引发了有关它们可能托管的新兴效应的新问题。然而,在足够大以进行光谱研究的规模上实现这些结构的实际挑战仍然是一个巨大的障碍,导致直接测量扭曲过渡金属二甲基化元素双层的电子带结构的直接测量很少。在这里,我们提出了一个系统的纳米级角度分辨光发射光谱调查,对散装,单层和扭曲的双层WS 2的光发射调查,小扭曲角为4.4°。实验结果与基于高对称方向的密度函数理论的理论计算进行了比较。出乎意料的是,电子带结构的测量表明,结构弛豫以4.4°扭曲角出现,并形成了大型,不WIST的双层区域。
我们将基于多体扰动理论和累积膨胀的AB从头算计算与角度分辨光发射光谱(ARPES)相结合,以量化高度掺杂的半导体过渡金属二核基因1 T -HFS中的电子样本相互作用。arpes揭示了传导带底部的准颗粒激发附近的卫星光谱特征的出现,这表明偶联与200 MeV的特征能量的玻体激发偶联。我们对光发射光谱函数的第一个原理计算表明,这些特征可以归因于电子耦合到载体等离子(掺杂诱导的集体电荷密度频率)。我们进一步表明,在表面上减少筛选会增强电子 - 种类的相互作用,并主要负责等离激子极性子的出现。
细胞在敌对或营养不足的环境中生存的主要挑战之一,例如肿瘤微环境,是由代谢失衡或快速增殖引起的活性氧(ROS)缓冲活性氧(ROS)。过多的ROS的细胞需要产生保护性分子,例如谷胱甘肽,以减轻破坏性作用。谷胱甘肽的产生需要半胱氨酸,通常通过SLC7A11胱氨酸 - 谷氨酸抗虫剂从细胞外环境中吸收氧化二聚体形式,胱氨酸。如果胱氨酸的摄取被阻断,细胞会经历铁毒性,这是由磷脂过氧化引起的铁依赖性死亡,尤其是多不饱和脂肪酸(PUFA),导致质膜膜中的广泛异常。铁凋亡通过白介素释放(IL-1和IL-18)激活免疫系统,并与炎症性疾病和伤害有关(1次审查1)。为了避免铁铁作用,许多癌症上调了SLC7A11,并进口大量胱氨酸以进行有效的谷胱甘肽生产。然而,这还需要准备好通过五磷酸五磷酸途径生产NADPH的葡萄糖,以便可以减少胱氨酸以降低用于谷胱甘肽生物合成(图1)。