疟原虫的无性血液阶段很容易通过同源重组来适应遗传修饰,从而使寄生虫基因的功能性研究在生命周期的这一部分中并非必不可少。然而,常规的反向遗传学不能应用于无性血液阶段复制中必不可少的基因的功能分析。已经开发了各种策略,用于浆细胞的条件诱变,包括基于重组酶的基因缺失,可调节启动子以及mRNA或蛋白质破坏稳定系统。在其中,可二聚Cre(DICRE)重组酶系统已成为p中有条件基因缺失的强大方法。恶意。在该系统中,噬菌体CRE以两种单独的酶无活性多肽的形式表达,每种酶融合了不同的雷帕霉素结合蛋白。雷帕霉素诱导的两个成分的异二聚化恢复重组酶活性。我们已经在啮齿动物疟原虫p。berghei,并表明可以在哺乳动物和蚊子寄生虫阶段具有很高的效率来实现雷帕霉素诱导的floxed DNA序列切除。此工具可用于投资基本基因的功能,不仅在无性血液阶段,而且在疟原虫生命周期的其他部分。
由于在囊性纤维化患者的痰中发现了高浓度的IL-8,因此我们假设铜绿假单胞菌(PA)诱导呼吸道上层细胞和单核细胞中IL-8的产生。因此,我们与人类转化的支气管上皮细胞(16-HBE)或单核细胞一起孵育了PA培养物的植物。已与PA超代孵育6小时的16-HBE细胞的培养物具有趋化活性,该抗体受到对人IL-8的抗体的抑制。PA上清液诱导原代支气管上皮细胞,16-HBE细胞和单核细胞产生IL-8。与PA上清液孵育后,16-HBE细胞显示IL-8基因表达水平显着升高。负责IL-8生产的PA产品抵抗冻结,沸腾和蛋白水解。该产品不可提取脂质,并且存在于1 kD滤液中。我们得出的结论是,PA的小分子质量产物刺激了16-HBE细胞和单核细胞的IL-8产生,并且在Expo-DA后16-HBE产生的趋化活性主要归因于IL-8。(J.Clin。投资。1994。93:26-32。)关键词:上皮 - 细胞因子表达 - 囊性纤维化 *内毒素 *趋化性
摘要。材料在塑造人类历史和文明中起着至关重要的作用,金属,聚合物,陶瓷和复合材料对科学技术的发展至关重要。在金属中,钢铁在制造行业中受到了优势和韧性的青睐。热处理可显着影响钢的材料特性。本研究采用PMI大师智能牛津OE(光学发射光谱法)进行组成分析,微观结构检查的光学显微镜以及用于硬度测试的Vickers方法。AISI 1040钢试样在720°C的消声炉中加热60分钟,然后在冷水(5°C)中淬火,室温水(30°C)和热水(70°C)。结果表明,在冷水中淬灭的标本表现出258.39 HV的最高硬度值,其微结构为45.45%珠光石和54.55%的铁矿。相比之下,在热水中淬灭的标本显示最低的硬性值为215.09 hv,其微结构由29.20%的珠光体和70.80%的铁素体组成。这些发现突出了淬灭温度对AISI 1040钢的硬度和微观结构特性的显着影响。
亚培养从Adher细胞中去除旧培养基,并在没有钙和镁的情况下洗净PBS。用于T25烧瓶使用3-5 ml PBS和T75 5-10 ml烧瓶。然后,使用1-2 mL对T25和2.5 mL烧瓶完全覆盖细胞,用于T75烧瓶。让细胞在室温下孵育8-10分钟以分开。孵育后,将细胞与10 ml培养基再次悬浮,然后在300xg洒3分钟。丢弃上清液,将细胞溶解在新鲜培养基中,然后将其转移到已经包含新培养基的新瓶中。
本文对欧洲现有和新兴的空间制冷技术进行了全面的分类和评估。该研究旨在根据八个侦察参数(物理能量形式、基本工作/操作原理、制冷剂或传热介质、工作流体的相位、具体物理过程/设备、空间制冷技术类型、燃料类型和技术就绪水平)对 32 种替代空间制冷技术进行分类,并评估其主要特征和发展趋势。欧洲对空间制冷的需求不断增长,因此有必要彻底了解这些技术及其节能潜力。目前,欧洲大部分空间制冷需求由传统蒸汽压缩系统满足,而一小部分由热驱动热泵满足。研究表明,几种替代空间制冷技术有望实现节能制冷,但在短期和中期效率和成本方面尚无法与蒸汽压缩系统竞争。然而,膜热泵、热电子系统、热隧道系统和蒸发式液体干燥剂系统等技术在特定应用中表现出成本竞争力和能源效率。研究结果强调需要进一步研究和开发,以提高替代空间冷却技术的效率、成本和市场竞争力。该研究还强调了政策支持的重要性和减少温室气体排放的紧迫性,这可以推动可持续冷却解决方案的采用和发展。
过去几年,全球疟疾负担的减轻进程停滞不前。2019 年,87 个疟疾流行国家共计有约 2.29 亿例疟疾病例,估计造成 386,000 人死亡(WHO,2020 年)。正在发生的 COVID-19 大流行对疟疾控制的影响尚未确定;然而,人们非常担心,资金、干预措施和物资的挪用只会导致疟疾发病率和死亡率的上升(Weiss 等人,2021 年)。新出现的和广泛的寄生虫耐药性已经使疟疾控制变得复杂。青蒿素联合疗法(ACT)是全球治疗恶性疟原虫疟疾的标准药物,其成分的耐药性在东南亚是一个严重问题,这些治疗方法在非洲必然会失效,必须尽可能推迟这一进程。持续的高疾病负担要求我们重新考虑疟疾控制,包括开发治疗疟疾的新药物组合。Chien 等人 (2021) 最近描述了一种潜在的新治疗方法。他们证明,用重新利用的抗癌药物靶向宿主蛋白可以作为标准治疗的辅助治疗,在这种情况下,二氢青蒿素/哌喹用于治疗无并发症的恶性疟原虫疟疾感染。在越南进行的一项小型研究中,他们发现在标准治疗中添加酪氨酸激酶抑制剂 (TKI) 伊马替尼可
本文对欧洲现有和新兴的空间制冷技术进行了全面的分类和评估。该研究旨在根据八个侦察参数(物理能量形式、基本工作/操作原理、制冷剂或传热介质、工作流体的相位、具体物理过程/设备、空间制冷技术类型、燃料类型和技术就绪水平)对 32 种替代空间制冷技术进行分类,并评估其主要特征和发展趋势。欧洲对空间制冷的需求不断增长,因此有必要彻底了解这些技术及其节能潜力。目前,欧洲大部分空间制冷需求由传统蒸汽压缩系统满足,而一小部分由热驱动热泵满足。研究表明,几种替代空间制冷技术有望实现节能制冷,但在短期和中期效率和成本方面尚无法与蒸汽压缩系统竞争。然而,膜热泵、热电子系统、热隧道系统和蒸发式液体干燥剂系统等技术在特定应用中表现出成本竞争力和能源效率。研究结果强调需要进一步研究和开发,以提高替代空间冷却技术的效率、成本和市场竞争力。该研究还强调了政策支持的重要性和减少温室气体排放的紧迫性,这可以推动可持续冷却解决方案的采用和发展。
钒的氧化状态决定了它的迁移率和毒性,已有报道称多种微生物存在异化钒酸盐还原反应,突出了该途径在钒污染修复和生物地球化学循环中的潜在意义。然而,到目前为止,已知的大多数能够还原钒酸盐的微生物都是属于变形菌门的革兰氏阴性呼吸道细菌。在本研究中,我们从北部中印度洋脊的深海沉积物中分离出一株嗜热杆菌 VROV1 菌株,并研究了其还原钒的能力以及钒酸盐对其细胞代谢的影响。一系列培养实验表明,分离的菌株在发酵过程中能有效地将 V(V) 还原为 V(IV),即使在 mM 水平上也是如此,而且这种还原涉及直接的生物过程,而不是通过代谢产物的间接还原。钒影响微生物的碳和氮代谢。值得注意的是,在钒酸盐存在的情况下,丙氨酸产量会减少,这表明代谢通量从转氨反应转向钒酸盐还原。T. mesophilus VROV1 是继 Lactococcus raffinolactis 之后第二种被鉴定为能还原钒的革兰氏阳性细菌,但这些细菌属于不同的类别:T. mesophilus 被归类为梭菌,而 L. raffinolactis 被归类为芽孢杆菌。VROV1 去除钒酸盐的特定速率高达 2.8 pmol/细胞/天,与金属还原细菌相当,明显超过 L. raffinolactis。我们的研究结果扩大了细菌领域内钒酸盐还原生物的分布。鉴于 T .嗜温杆菌及其近亲,我们推测发酵钒酸还原对钒的全球生物地球化学循环的影响可能比以前认为的更大。
近年来,电子游戏在全球媒体行业的快速发展促进了游戏研究的发展,这是一门跨学科领域,不仅关注电子游戏的心理教育价值和文化含义,还关注其交流形式与视觉语言之间的关系(Pecchinenda,2010)。这表明电子游戏不仅是一种社会现象,也是重新定义我们与视觉叙事关系的交汇点(Wolf & Perron,2003)。视觉文化学者认为,每种媒介都借鉴了其前身的某些特征,身份属性不同。与其他视觉叙事一样,即使在电子游戏中,故事也是通过图像讲述的,这使得包含所有对故事有用的元素的空间表现发挥了核心作用(Zoran,1984)。然而,视频游戏具有一个独特的特点:它是第一个将视觉活力与积极参与角色相结合的媒介(Greenfield,1984)。如果在其他媒介中,观众从外部观察角色的行为,那么视频游戏中的互动会打破这种机制。玩家是故事的中心,他通过自己的行动来完成故事(Ad ams,2002)。从“旁观者”的位置转变为互动者的位置,也意味着与空间的新关系。操纵屏幕上的图像意味着对空间采取行动;这使得视频游戏成为“最接近故事基本体验的媒介”(Grodal,2000,第 197 页)。因此,传统叙事被 Cubitt(2001)所说的“后叙事空间化”所取代,这表明空间不再是传统叙事结构的视觉延伸,而成为组织故事的一种方式。空间构成了游戏研究人员普遍接受的唯一类别,这并非偶然。事实上,根据 Aarseth (2007) 的说法,“游戏庆祝并探索空间表现作为其核心主题和存在理由”(第 44 页)。Jenkins (2003) 认为,游戏设计师不会告诉
(1)研究主题。先进材料科学硕士课程为学生提供材料科学领域的深入科学基础以及工程知识和技能的培训。特别注重以跨学科的方式传达教育和培训目标,促进批判性观点,以及从多个角度全面考虑材料及其属性。 (2)资格概况和能力。先进材料科学硕士课程的硕士学位授予已展示以下知识、技能和能力的学生。知识和理解 成功完成硕士课程后,毕业生将获得材料制造、加工、特性、建模和应用领域的基本知识。毕业生在以下领域之一加深了专业知识: • 金属和陶瓷材料(Metals and Ceramics) • 半导体加工和纳米技术 • 生物基材料(Biobased Materials) 特别是,先进材料科学硕士课程的毕业生具备以下技能: • 广泛了解材料科学的基本原理及其技术应用,以及扎实的材料、材料科学方法和策略知识。 • 通过进行以书面形式记录的研究获得的专业知识。 • 了解其研究领域的关键研究问题。 • 具有处理跨学科科学/技术问题的经验。运用知识和理解