简介 在精神病学领域,三环类抗抑郁药被广泛用于治疗各种疾病,尤其用于治疗临床抑郁症 [1–3]。在大多数情况下,这些药物的主要目的是抑制突触前区域对去甲肾上腺素或血清素的吸收。然而,这些药物的效力各不相同,而且往往会引起不良的副作用。尽管有更新、更安全的替代品,但三环类抗抑郁药仍然被用作处方药,因为它们成本较低,而且是一类最突出的抗抑郁药。尽管还有其他选择,情况仍然如此。三环原子构成三环抗抑郁药的分子结构,这些药物的名称由此而来 [4–7]。在大多数情况下,核心环由七个原子组成,侧链由 N-烷基甲胺或 N-烷基二甲胺组成。丙咪嗪、地昔帕明、氯米帕明、阿米替林、去甲替林、多塞平和曲米帕明等药物是常用的三环类抗抑郁药的例子[8-10]。
Kwi“Kat”Choi 和 Robin L. Goldfaden,副检察长;Vilma R. Palma-Solana 和 Marisa Hernandez- Stern,监督副检察长;Satoshi Yanai 和 Michael L. Newman,高级助理检察长;Rob Bonta,加利福尼亚州检察长;加利福尼亚州总检察长办公室,加利福尼亚州洛杉矶;William Tong,康涅狄格州检察长,康涅狄格州哈特福德;Kathleen Jennings,特拉华州检察长,特拉华州威尔明顿;Holly T. Shikada,夏威夷州检察长,夏威夷州檀香山;Kwame Raoul,伊利诺伊州检察长,伊利诺伊州芝加哥;Aaron M. Frey,缅因州检察长,缅因州奥古斯塔;Brian E. Frosh,马里兰州检察长,马里兰州巴尔的摩;Dana Nessel,密歇根州检察长,密歇根州兰辛;明尼苏达州总检察长基思·埃里森 (Keith Ellison),明尼苏达州圣保罗市;新泽西州代理总检察长马修·普拉特金 (Matthew J. Platkin),新泽西州特伦顿市;新墨西哥州总检察长赫克托·巴尔德拉斯 (Hector Balderas),圣达菲市
磷酸肌醇 3-激酶 (PI3K) 是控制许多细胞功能(包括生长、存活、代谢和增殖)的重要途径。该途径由三个主要成分组成:雷帕霉素的机制靶点 (mTOR)、蛋白激酶 B (Akt) 和 PI3K。肌醇脂质的磷酸化是由 PI3K 激活引起的,这反过来又激活了 Akt。Akt 促进细胞周期进程并抑制促凋亡蛋白,控制细胞存活和增殖所必需的几种下游途径 [1]。癌症通常表现出 PI3K/AKT/mTOR 通路失调,这会导致细胞增殖不受控制和对凋亡产生抵抗力。PI3K 的突变或扩增,或其下游效应物的改变,可导致该途径过度活跃。这种异常信号与许多癌症有关,包括乳腺癌、肺癌和前列腺癌 [2]。因此,关注 PI3K 通路已成为一种可行的癌症治疗方法,其目标是恢复正常的细胞调节并防止肿瘤发展。益生菌是一种对宿主有益的活微生物,因其在肠道健康中的作用以及在癌症预防和治疗中的潜力而备受关注。某些益生菌菌株会产生细菌素,这是一种可以抑制致病菌生长的抗菌肽。最近的研究将重点扩大到包括这些细菌素的抗癌特性。除了诱导癌细胞凋亡和抑制肿瘤发展外,细菌素还会改变免疫系统 [3]。益生菌中的细菌素已显示出通过不同机制靶向癌细胞的潜力。例如,它们可以与细胞膜相互作用,导致细胞裂解或细胞功能改变。此外,细菌素可能会影响与癌症相关的信号通路,例如 PI3K 通路。通过影响这些途径,细菌素可能有助于控制肿瘤进展并增强现有疗法的疗效 [4, 5]。在本研究中,我们探讨了细菌素与肿瘤细胞的相互作用
什么是太空对接? 太空对接是两个航天器或模块在太空中相互连接或附着的过程。这项技术允许航天器在轨道上对接,以实现特定目标。对接过程通常涉及一艘航天器(追逐者)接近另一艘航天器或空间站(目标)并与其对齐,以进行物理连接。 1. 空间站组装:对接是建造大型太空结构(如空间站)的关键,空间站中多个模块分别发射,然后在轨道上对接在一起。 2. 卫星维修:对接使航天器能够与卫星连接,以便在轨道上加油、维修或升级,从而延长卫星的使用寿命,而无需发射替换件。 3. 机组人员转移:对于载人航天任务,对接允许宇航员在航天器之间或航天器与空间站之间转移。 4. 资源共享:对接的航天器可以传输补给、电力和数据,支持深空探索等长期任务。太空对接是如何进行的
1. 引言共晶是由活性药物成分 (API) 和共晶形成剂 (或构象异构体) 形成的,作为固体药物形成的有前途的替代方案,正在引起制药界越来越多的关注。迄今为止,科学家已经合成了各种类型的不常见共晶,其中含有金属配合物作为晶体形成剂和 API [1–3]。与单组分晶体相比,这些共晶增强了各种药学相关特性,包括提高了溶解度、溶解速率、水合稳定性、荧光性能和生物利用度 [4]。API 和共晶形成剂之间的相互作用通过非离子和非共价的分子间相互作用发生,例如范德华力和氢键。因此,未使用的氢键供体和受体位点的存在对于共晶的形成至关重要 [5,6]。
1988年,SGLT-2通过同源性筛选被鉴定(Santer and Calado,2010;Vallon and Thomson,2017)。据报道,SGLT-2介导90%以上的肾脏葡萄糖重吸收(Hummel等,2011)。SGLT-2抑制剂通过阻止近曲小管葡萄糖重吸收来降低血糖,从而起到抗糖尿病的作用,并通过抑制SGLT-2蛋白来促进肾脏葡萄糖排泄(Abdul-Ghani等,2011)。对于糖尿病的治疗和控制,有许多治疗和靶向技术可用(Nauck 等人,2021 年),其中之一是通过 SGLT-2 抑制肾脏对葡萄糖的重吸收,这是一种帮助 2 型糖尿病患者降低血糖的新方法。在治疗 2 型糖尿病时,SGLT-2 抑制剂是一个很好的选择,因为它们可以降低血糖水平而不会损害胰岛素的产生(Miller 和 Shubrook,2015 年)
背景/目的:冠状病毒病 (COVID-19) 是一个全球性的健康问题,人们正在寻求治疗方案,对能够消除或减轻 SARS-CoV-2 影响的药物的需求日益增加。冠状病毒病会留下永久性的影响,甚至会对免疫系统较弱的患者造成致命影响。考虑到这一重要因素,本研究选择了天然脂类黄酮营养补充剂作为目标药物,该营养补充剂既可用于增强免疫系统,也可用于治疗耳鸣、嗅觉和味觉障碍。材料和方法:对脂类黄酮化合物进行分子对接分析,以了解 SARS-CoV-2、NMDAR 和 VKORC1 蛋白之间的分子相互作用机制。结果:特别是,发现 NSP16(-7.97 kcal/mol)和维生素 K 环氧化物还原酶(-7.13 kcal/mol)中的硝酸硫胺素的对接得分较高。核黄素在 K 环氧还原酶中的插入分数 (-8.66 kcal/mol) 也被发现较高。结论:这些对接结合分数表明这些化合物可用作潜在抑制剂。脂黄酮类化合物可在短时间内有效治疗 COVID-19 的常见症状嗅觉-味觉障碍和耳鸣,并可阻止冠状病毒的复制,这一假设已得到理论证实。
疟疾主要由恶性疟原虫引起,仍然是一个严重的公共卫生问题,因此需要开发新的抗疟药物。恶性疟原虫热休克蛋白 90 (Hsp90) 对寄生虫的生存不可或缺,也是一种很有前途的药物靶点。针对 N 端结构域的 ATP 结合口袋的抑制剂具有抗疟原虫作用。我们提出了一种从头主动学习 (AL) 驱动的方法,结合对接来预测具有独特支架和对 PfHsp90 优先选择性的抑制剂。预测在 ATP 结合口袋处与 PfHsp90 结合并具有抗疟原虫活性的参考化合物被用于生成 10,000 种独特衍生物并建立自动定量结构活性关系 (QSAR) 模型。进行滑动对接以预测衍生物和从 ChEMBL 数据库获得的 15,000 多种化合物的对接得分。对模型进行反复训练和测试,直到最佳的基于 Kennel 的偏最小二乘 (KPLS) 回归模型达到收敛,该模型的训练集回归系数 R2 = 0.75,测试集的平方相关预测 Q2 = 0.62。使用诱导拟合对接和分子动力学模拟重新评分使我们能够优先考虑 15 种 ATP/ADP 类设计理念以供购买。这些化合物对恶性疟原虫 NF54 菌株表现出中等活性,IC 50 值为 ÿ 6 μ M,对 PfHsp90 表现出中等至弱亲和力(KD 范围:13.5–19.9 μ M),与报道的 ADP 亲和力相当。最有效的化合物是 FTN-T5(PfN54 IC 50:1.44 μ M;HepG2/CHO 细胞 SI ÿ 29),它以中等亲和力(KD:7.7 μ M)与 PfHsp90 结合,为优化工作提供了起点。我们的工作证明了 AL 在快速识别用于药物发现的新分子(即命中识别)方面具有巨大实用性。FTN-T5 的效力对于设计物种选择性抑制剂以开发更有效的抗疟药物至关重要。
继续进行BPS研究的续性,而部门主要寻求有关BPS研究的评论和建议,而提前则通过2025/30和2030/35的其他同类人群延续了BPS研究。BPS研究提供了有价值的信息,例如残疾学生的持久性和毕业率,并允许我们的组织等组织学习残疾政策和实践如何随着时间的推移产生影响。在BPS研究中修改残疾和与健康相关的问题以进行BPS研究的未来迭代,强烈敦促该部门修改与残疾和健康状况有关的问题,以便反映出对大学生和残疾服务专业人员如何概念化残疾的最新了解。更新的问题和语言将允许更多的输入和清晰的信息。例如,可以改进BPS研究中以下质疑以反映残疾的最新概念:•许多残疾问题询问病情是否“严重”,导致许多学生不自我报告