teddy ang食品和营养科学学士学位(荣誉)迪肯大学生理学和代谢的前荣誉和博士学位学生荣誉主题:欧米茄-3 docosapentaenoic补充剂补充口服葡萄糖对口服葡萄糖耐受性的影响,在饮食诱导的葡萄糖兴奋剂模型中,这是良好的gl糖hor剂量,但最具挑战性的是最具挑战性的人。丰富。这是您将从任何荣誉幸存者那里听到的,但是在这个为期8个月的过山车骑行中,您将获得的技能,经验和记忆将是无价的,无论您将来的努力如何。对我来说,它能够与监督团队紧密合作,并接受了我真正感激的实验室培训,而更不用说您自己独特的杰作,他们称之为“论文”。荣誉不仅是平凡的课程研究的又一年,而且是成为更大事物的一部分的机会,并让人们知道,不可避免的痛苦和挣扎值得鲜血,汗水和眼泪。
鉴于它们的高生物质产生以及其商业上重要的代谢产物(脂肪酸,脂质,色素和酶)的多样性,它们正在获得地面,而这些是Thraustochytrids(THS)。 已知含有omega-3(ω3)长链多不饱和脂肪酸(LC-PUFA)的高细胞含量,例如eicosapentaenoic酸(EPA),二十五烯酸(DHA),以及在各种治疗方面和预防症状,并在各种治疗中都重要。在人类和动物营养中应用作为食物补充剂。 1,2在这个意义上,Fan等人研究了废水作为培养Ths的底物的使用。 3他们检测到Okara残留物中有机负荷(化学氧需求,COD)的减少(豆浆生产中的残留物),Shochu(日本酒精饮料中的残留物),椰子水5和粗甘油也使用了4,也使用了生物液。 6同样,研究了薯片工业的液体废物,啤酒的生产以及羽扇豆蛋白提取过程中的研究7表明,THS产生的DHA和EPA浓度的值分别高于40%和10%,是干重的40%和10%,是omega-3的有趣替代品,用于在Omega-3中用于宠物食品。鉴于它们的高生物质产生以及其商业上重要的代谢产物(脂肪酸,脂质,色素和酶)的多样性,它们正在获得地面,而这些是Thraustochytrids(THS)。含有omega-3(ω3)长链多不饱和脂肪酸(LC-PUFA)的高细胞含量,例如eicosapentaenoic酸(EPA),二十五烯酸(DHA),以及在各种治疗方面和预防症状,并在各种治疗中都重要。在人类和动物营养中应用作为食物补充剂。1,2在这个意义上,Fan等人研究了废水作为培养Ths的底物的使用。3他们检测到Okara残留物中有机负荷(化学氧需求,COD)的减少(豆浆生产中的残留物),Shochu(日本酒精饮料中的残留物),椰子水5和粗甘油也使用了4,也使用了生物液。6同样,研究了薯片工业的液体废物,啤酒的生产以及羽扇豆蛋白提取过程中的研究7表明,THS产生的DHA和EPA浓度的值分别高于40%和10%,是干重的40%和10%,是omega-3的有趣替代品,用于在Omega-3中用于宠物食品。
随着人们意识到摄入 Omega-3 脂肪酸的益处(抗炎、改善心血管健康、认知发展等),消费者对这些脂肪酸的需求正在增加(Tiwari 等人,2021 年)。膳食摄入二十碳五烯酸 (EPA) 和二十二碳六烯酸 (DHA) 可改善心血管健康,因为它们被整合到心肌细胞的磷脂双层中,从而调节离子通道,从而预防致命的心律失常 (Endo 和 Arita,2016 年)。EPA 和 DHA 还显示出其他益处,例如抗血栓、降血压、内皮松弛、抗动脉粥样硬化和抗纤维化作用 (Endo 和 Arita,2016 年)。DHA 是大脑中的主要 Omega-3 脂肪酸。摄入 DHA 可提高认知能力;流行病学研究表明,增加 DHA 的摄入可将痴呆症风险降低高达 50%(Cole 等人,2009 年)。EPA 和 DHA 还可以降低癌症风险;例如,将 EPA 和 DHA 与阿霉素结合,可引起乳腺癌细胞系中膜脂质、筏的变化(表面表达增加)和死亡受体聚集(CD95)(Ewaschuk 等人,2012 年)。根据 Grand View Research 的数据,到 2027 年,ω-3 脂肪酸市场将以 7.7% 的复合年增长率扩大(Oliver 等人,2020 年)。 Omega-3 脂肪酸包括α-亚麻酸 (ALA) (18:3, n-3)、十八碳四烯酸 (STA) (18:4, n-3)、二十碳五烯酸 (EPA) (20:5, n-3)、二十二碳五烯酸 (DPA) (20:5, n-3)、二十二碳六烯酸 (DHA) (22:6, n-3)。在所有 Omega-3 脂肪酸中,EPA 和 DHA 已被证明对健康有显著贡献,因此在营养保健品行业中属于小众产品。Omega-3 脂肪酸传统上是从鱼类等动物来源生产的。作为 EPA 和 DHA 的传统来源,鱼类面临着许多相关挑战,表明需要替代来源。鱼类使用面临的最大障碍是过度开发,这严重破坏了海洋生态系统(Sumaila 和 Tai,2020 年)。鱼类可能受到重金属、杀虫剂、多氯联苯 (PCB) 等的污染,长期食用受污染的鱼类会导致不同类型的健康问题 (Basu 等人,2021 年)。由于 EPA 和 DHA 对热敏感,因此食用前烹饪鱼类会导致可供食用的有益 EPA 和 DHA 量极少 (Peinado 等人,2016 年)。这些相关的缺点损害了通过食用鱼类获取 EPA 和 DHA 的益处。为了满足对 omega-3 的需求,人们已经探索了微藻、转基因生物 (GMO)(转基因植物、转基因真菌)等替代来源 (Zhao 等人,2016 年)。表 1 总结了用于生产 EPA 和 DHA 的不同转基因来源以及相应的 EPA 和 DHA 产量。微藻可以自然产生 omega-3 脂肪酸,不会争夺肥沃的土地或淡水(对于海洋藻类而言)。微藻可以自然吸收二氧化碳,使其在工业中的使用既环保又可持续。然而,从藻类中生产营养保健品的过程需要努力才能在经济上可行。需要新的策略来减少