目的:KLK7,也称为kallikrein 7,是一种分泌的酶,被分类为丝氨酸蛋白酶。较早的研究表明,KLK7,KLK10和KLK11与甲状腺乳头状甲状腺癌(PTC)个体的存活率和免疫反应有关。本研究检查了KLK7,研究其作用和表达,并评估其作为PTC治疗靶标的生存能力。方法:最初,我们使用生物信息学技术检查了KLK7在PTC中的表达和可能功能。研究人员检查了KLK7对PTC癌症特征的影响,并探讨了KLK7是否使用PTC中的MAPK/ERK途径使用免疫组织化学和生长曲线分析来影响上皮 - 间质转变(EMT)过程。最终,进行了使用裸鼠的模型,以确认KLK7对PTC的影响。结果:我们的研究表明,KLK7在THCA组织中表现出差异,而KLK7相关的基因具有参与PTC的蛋白质合成,遗传变异,mRNA降解和免疫微环境的作用。klk7在PTC组织中被上调,并与临床阶段和淋巴结转移呈正相关。此外,KLK7的抑制显着降低了PTC细胞的增殖,迁移和侵入性。值得注意的是,沉默的KLK7降低了ERK1/2的磷酸化和EMT的抑制。体内实验进一步支持了这些发现。klk7可能是PTC患者的有效治疗靶标和预测性生物标志物。KLK7似乎是针对PTC治疗的有前途的候选人。结论:通过通过MAPK/ERK信号通路影响EMT,KLK7可能在PTC的癌变中至关重要,从而影响PTC细胞的生长,迁移和侵入性。
环境污染物[A] pyrene(BAP)通常在环境中发现,微型塑料(MPS)充当BAP的主要载体中生物有机体的主要载体,从而增加了其体内的可用性。然而,尚未完全了解携带污染物的MP携带污染物的特定途径和机制。这项研究旨在研究小鼠肾损伤的途径和机制,以使MPS和BAP均为低浓度。聚苯乙烯(PS)和BAP肾脏中断脂质代谢的结合,导致一种称为铁毒性的细胞死亡形式。但是,在体外HK-2细胞中未观察到这种作用,表明细胞特异性反应。有趣的是,在HIEC-6细胞中,PS和BAP都直接诱导了铁凋亡。这些发现证实了暴露于PS和BAP的情况会破坏肾脏中的代谢稳态,从而导致肾脏功能障碍和细胞死亡。
免疫疗法的基本问题是大多数类型的肿瘤中缺乏肿瘤特异性抗原,从而导致免疫耐受性。对于大约85%的微卫星稳定患者(MSS)结直肠癌(CRC),缺乏肿瘤新抗原会导致免疫疗法功效不佳。我们先前的研究表明,非蛋白酶脯氨酸(PRO)类似物氮氮杂氨酸-2-羧酸(AZE)的掺杂可能会产生突变的蛋白质,从而显着增强肿瘤细胞抗原性和抗肿瘤免疫反应。方法:为了激活更特异性的抗肿瘤免疫反应,副作用较少,我们利用了非蛋白质生成丝氨酸(SER)类似物β-N-甲基氨基氨基 - L-丙氨酸(BMAA),可以通过适当的速率将其用作Seryl TRNA合成酶将其掺入蛋白质中。BMAA掺入的新抗原,并在鼠CRC模型中选择了具有高抗原性的癌细胞富集肽,以制备基于BMAA的自组装纳米颗粒(SAN)。单细胞测序,以分析由SAN疫苗接种诱导的免疫反应,并结合Toll样受体7激动剂(TLRA)辅助和BMAA治疗。结果:San-TlrA接种BMAA治疗诱导了抗肿瘤免疫微环境。这种组合刺激了特定CD8 + T细胞的产生和靶向BMAA的IgG衰老的Neopitopes,最终促进了CRC鼠模型中的免疫激活,抑制肿瘤和延长生存率。这种方法为CRC免疫疗法提供了新的途径。此外,BMAA与SAN疫苗相结合,显着增强了免疫检查点抑制剂抗PD-1抗体的功效。结论:我们的发现提供了一种有前途的策略,用于使用BMAA人为地引入新抗原,这可以破坏免疫耐受性而不会破坏全身免疫平衡。
背景:乳腺癌干细胞样细胞 (BCSC) 被认为是肿瘤起源、转移和耐药性的来源,从而限制了目前的治疗方案。据报道,豆固醇可抑制各种癌症过程,但其在 BCSC 中的作用和机制尚未得到研究。方法:为了生成球体,我们在无血清培养基中用 BCSC 富集亲本和 SUM159 细胞。首次通过体内和体外实验检测了 CSC 富集的 SUM159 细胞对干细胞、转移和耐药性的影响。结果:CSC 富集的 SUM159 和 4T1 细胞表现出更高的肿瘤发生和转移潜力。豆固醇抑制 BCSC 的球体形成、细胞活力和迁移能力并促进细胞凋亡。豆固醇还抑制了大鼠模型中 BCSC 起源的癌症形成。豆固醇还能抑制人乳腺癌组织中TNBC类器官的生长。这些数据揭示了豆固醇对BCSC性状的抑制作用。同时,我们发现JAK3在BCSC中上调,而豆固醇可以有效抑制其表达。此外,有证据表明JAK3在体内和体外均对BCSC活性和干性有负向调控作用。更重要的是,结果表明豆固醇通过抑制JAK3表达来抑制BCSC活性。结论:本研究首次证明豆固醇通过下调JAK3来抑制BCSC的转移和干性,这可能为豆固醇在乳腺癌的临床应用提供一种新方法。
植物学和微生物学系,科学学院,Sohag University,Sohag,82524,埃及。*电子邮件:gem_gad@yahoo.com收到:2024年11月16日,修订:2024年12月2日,接受,接受:2025年12月19日在线发布:2025年2月7日,2025年2月7日摘要:曲线摘要(sumcc 22003)(sumcc 22003)是一种与药物的内生真菌相比,是一种与药物的叶子相比,该植物植物caltroproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproprop- h.--埃及。根据形态和系统发育分析确定了真菌。研究了C. spicifera对生物合成银纳米颗粒(AGNP)的能力。使用UV-VIS光谱,XRD测量,DLS,ZETA电位分析,FTIR和HR-TEM分析来表征生物合成的AGNP。形成的AGNP稳定,分散且球形晶体,平均直径为38.41 nm,ZETA电位为-6.35 mV。FTIR分析证实AGNP用蛋白质封盖。生物合成优化研究表明,1 mM Agno3,5 g生物量重量,pH 10.5和60°C的反应温度是AGNPS生物合成的最佳条件。agnps在不同浓度上对革兰氏阴性细菌,革兰氏阳性细菌和酵母菌的测试物种发挥了显着的抗菌活性,表明它们作为广谱抗菌剂的潜力。大肠杆菌对AGNP(50 µg)的敏感性最高,抑制区直径为23.7±0.3 mm,MIC 4.2±0.1 µg。agnps(50 µg)的抑制区为16.7±0.1 mm,MIC对于白色念珠菌的抑制区为5.7±0.3。关键词:钙髓质Procera,细胞外生物合成,表征,优化,抗菌活性
1. 中国中医科学院中药研究所、青蒿素研究中心、道地药材质量保障与可持续利用国家重点实验室,北京 100700。2. 中国医学科学院北京协和医学院北京协和医院中医科,北京 100730。3. 沈阳药科大学辽宁省基于计算化学的天然抗肿瘤药物研究重点实验室,辽宁 沈阳 110016。4. 河南大学药学院、抗病毒药物国家重点实验室,开封 475000。5. 河南农业大学动物科技学院,郑州 450002。6. 南方医科大学中医学院、药学院,广东 广州 510515。 7. 中国医学科学院北京协和医学院药用植物研究所,天然药物活性物质与功能国家重点实验室,北京 100193。8. 深圳市人民医院(南方科技大学第一附属医院、暨南大学第二临床医学院)重症医学科,广东省老年医学临床研究中心,深圳市老年医学临床研究中心,核医学科,广东深圳 518020。
1。肾脏科学与泌尿外科研究中心,伊朗德黑兰Baqiyatallah医学科学大学临床科学研究所。2。新加坡新加坡国立大学Yong Loo Lin医学院药理学系。 3。 NUS癌症研究中心(N2CR),新加坡新加坡国立大学Yong Loo Lin医学院。 4。 意大利巴勒莫大学90123生物学,化学和药物科学与技术系。 5。 细胞系统和解剖学系,UT Health San Antonio,Long School of Medicine,San Antonio,美国德克萨斯州。 6。 纳米比奥高科技材料研究中心,生物科学与生物工程系,Inha University,100 Inha-Ro,Incheon 22212,大韩民国。 7。 美国马萨诸塞州波士顿的Deepliestix Inc.体外视觉部。 8。 伊朗Ahvaz Ahvaz Shahid Chamran大学兽医学院生物化学与分子生物学系。新加坡新加坡国立大学Yong Loo Lin医学院药理学系。3。NUS癌症研究中心(N2CR),新加坡新加坡国立大学Yong Loo Lin医学院。 4。 意大利巴勒莫大学90123生物学,化学和药物科学与技术系。 5。 细胞系统和解剖学系,UT Health San Antonio,Long School of Medicine,San Antonio,美国德克萨斯州。 6。 纳米比奥高科技材料研究中心,生物科学与生物工程系,Inha University,100 Inha-Ro,Incheon 22212,大韩民国。 7。 美国马萨诸塞州波士顿的Deepliestix Inc.体外视觉部。 8。 伊朗Ahvaz Ahvaz Shahid Chamran大学兽医学院生物化学与分子生物学系。NUS癌症研究中心(N2CR),新加坡新加坡国立大学Yong Loo Lin医学院。4。意大利巴勒莫大学90123生物学,化学和药物科学与技术系。5。细胞系统和解剖学系,UT Health San Antonio,Long School of Medicine,San Antonio,美国德克萨斯州。6。纳米比奥高科技材料研究中心,生物科学与生物工程系,Inha University,100 Inha-Ro,Incheon 22212,大韩民国。7。美国马萨诸塞州波士顿的Deepliestix Inc.体外视觉部。8。伊朗Ahvaz Ahvaz Shahid Chamran大学兽医学院生物化学与分子生物学系。
抽象自然语言处理(NLP)已成为医疗文献的变革性技术,解决了数据复杂性,互操作性和记录保存错误等挑战。本文探讨了NLP的基本原理,其在医疗保健中的应用以及其在自动化和提高临床文档准确性中的作用。关键重点领域包括提取非结构化数据,实时转录和情感分析,以及对维持患者机密性至关重要的道德和隐私注意事项。尽管有预算限制和系统互操作性等挑战,但NLP医疗保健中NLP的未来仍然对个性化医学,预测分析和实时决策有望。通过NLP的进步,医疗保健提供者可以在确保道德合规性的同时解锁宝贵的见解并优化患者护理。关键字:自然语言处理(NLP),医疗文献,临床数据,医疗保健技术,患者隐私,道德考虑因素。
特发性肺纤维化(IPF)是一种进行性疾病,其特征是过度胶原蛋白沉积最终导致组织僵硬和功能下降。超过IPF,其他进行性肺纤维化通常与结缔组织疾病有关,并且可能在约18-32%的患者中发展。治疗选择仅限于Nintedanib和Pirfenidone,它们只能降低纤维化进展而无需固化。目前缺乏生物标志物无法准确评估和预测IPF的疾病进展和治疗功效仍然是一个主要的临床关注点。方法:在我们的研究中,使用靶向胶原蛋白的放射性药物[68 ga ga-nodaga-collagelin在体内分子成像中,通过体内分子成像在博来霉素诱导的小鼠中监测胶原蛋白沉积。还使用计算机断层扫描(用于检测患者肺纤维化的金标准技术)来监测纤维化进展。结果:我们证明了博来霉素诱导的胶原肺含量增加可以通过[68 GA] Ga-Nodaga-Collagelin PET成像与疾病阶段和严重程度相关。[68 Ga] Ga-Nodaga-胶原蛋白的肺摄取主要在博来霉素吸收小鼠的肺纤维化区域中发现。最有趣的是,[68 GA] Ga-Nodaga-Collagelin PET成像允许在体内对Nintedanib疗效的非侵入性监测以及JAK抑制剂Tofacitinib的抗纤维化效应。结论:因此,以胶原蛋白为目标的宠物成像是一种有希望的非侵入性工具,用于对IPF的个性化医学进行分期,监测和预测疾病进展和治疗功效。
理论基础:多形性胶质母细胞瘤(GBM)是中枢神经系统最恶性的肿瘤之一,其预后不良主要是因为术后化疗迅速产生耐药性导致复发率高。虽然巨自噬/自噬被认为是化疗期间肿瘤存活的基本因素,但临床上仍然缺乏用于预测患者预后和化疗效果的自噬生物标志物。方法:我们结合转录组和单细胞测序数据来识别胶质瘤中差异表达的自噬相关基因。我们发现与蛋白质折叠相关的关键基因钙联蛋白(CANX)的过表达及其在内质网(ER)中的分泌,提示GBM患者预后不良。通过透射电子显微镜(TEM)、蛋白质印迹和免疫荧光检测与CANX相关的自噬流。采用流式细胞术、细胞增殖、活性测定和 GBM 颅内异种移植小鼠模型来验证 CANX 在 GBM 进展中的作用。结果:CANX 敲低抑制了 GBM 细胞的增殖和自噬体形成。另一方面,CANX 过表达增加了丝裂原活化蛋白激酶 (MAPK) 活性,导致 BNIP3(CL2/腺病毒 E1B 19 kDa 相互作用蛋白 3,调节线粒体自噬的关键因子)的积累和保护性线粒体自噬。值得注意的是,当与替莫唑胺 (TMZ) 结合时,CANX 敲低延长了 GBM 携带小鼠的寿命。此外,我们的研究表明,经典钙抑制剂尼莫地平 (ND) 降低了 CANX 表达,从而增强了对 TMZ 的敏感性。结论:我们的研究结果表明 CANX 在 GBM 中起着致癌基因的作用。我们还描述了 CANX/MEK/ERK/BNIP3 线粒体自噬通路,为 GBM 耐药性的分子机制提供了新的见解,并确定了治疗靶点。