摘要:用于成像神经递质、神经调节剂和神经肽的新工具的出现改变了我们对神经化学在大脑发育和认知中的作用的理解,但对这一新维度的神经生物学信息的分析仍然具有挑战性。在这里,我们使用近红外儿茶酚胺纳米传感器 (nIRCat) 对纹状体脑组织切片中的多巴胺调节进行成像,并实施机器学习以确定多巴胺调节的哪些特征是刺激强度变化和不同神经解剖区域所独有的。我们训练了一个支持向量机和一个随机森林分类器来判断记录是从背外侧纹状体 (DLS) 还是背内侧纹状体 (DMS) 进行的,并发现机器学习能够准确区分 DLS 中发生的多巴胺释放和 DMS 中发生的多巴胺释放,而这是典型统计分析无法实现的。此外,我们的分析表明,多巴胺调节信号(包括独特的多巴胺释放位点的数量和每次刺激事件释放的多巴胺峰值)最能预测神经解剖学。这是因为综合神经调节剂的量是用于监测动物研究中神经调节的常规指标。最后,我们的研究发现,机器学习对不同刺激强度或神经解剖区域的区分仅在成年动物中才有可能,这表明在动物发育过程中多巴胺调节动力学具有高度的可变性。我们的研究强调,机器学习可以成为一种广泛使用的工具,用于区分神经解剖区域或神经典型状态和疾病状态,具有传统统计分析无法检测到的特征。关键词:多巴胺、机器学习、纳米传感器、纹状体■简介
研究文章 | 系统/电路 多巴胺 D1 受体组织有助于功能性大脑结构 https://doi.org/10.1523/JNEUROSCI.0621-23.2024 收到日期:2023 年 4 月 3 日 修订日期:2023 年 12 月 1 日 接受日期:2024 年 1 月 21 日 版权所有 © 2024 Pedersen 等人。这是一篇开放获取的文章,根据知识共享署名 4.0 国际许可条款分发,允许在任何媒体中不受限制地使用、分发和复制,前提是对原始作品进行适当的归属。
关于功能性大脑映射的数十年研究强调了了解大脑皮层功能组织的重要性。最近的进步揭示了功能组织的梯度,这些组织从主要感觉到跨模式皮层。已经认为,这种类似梯度的连通性轴与神经调节受体密度的区域差异对齐。非人类灵长类动物的最新工作支持了这一概念,揭示了沿皮质层次结构的多巴胺D1样受体(D1DR)密度的梯度。鉴于多巴胺能调节对突触活动和神经增益的重要性,我们测试了D1DR是否具有人类中大脑功能相同的组织原理,以及D1表达中的区域间关系是否调节功能性串扰。使用世界上最大的多巴胺D1DR-PET和MRI数据库,我们首次在人类中提供了经验支持,即D1DR可用性的景观遵循单型跨模态的皮质层次结构,在联想皮层区域具有更大的D1DR表达。我们发现了一个区域间D1DR共同表达的组织,该组织跨越了跨模式的大脑区域,表达了与功能连通性的主要宏观宏观梯度的高空间对应关系。至关重要的是,我们发现单峰和跨模式区域之间D1DR密度的个体差异与默认模式和体感网络的更大分化有关。最后,发现区域间D1DR共表达可调节功能网络内部但不调节耦合。一起,我们的结果表明D1DR共表达为大脑的功能组织提供了生物分子层。
。CC-BY-NC-ND 4.0 国际许可,根据未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2023 年 4 月 12 日发布。;https://doi.org/10.1101/2023.04.12.536506 doi:bioRxiv 预印本
在自身免疫性糖尿病(1)的情况下,Sahota及其同事最近的一份病例报告为通过多巴胺(DA)受体刺激提供了新的见解。Brie the,一名自身免疫性糖尿病患者被诊断出患有垂体催乳素瘤,导致用糖尿病药物的Da D 2 -2类受体的激动剂Cabergoline治疗。随着时间的流逝,患者被切换到Cabergoline单一疗法,从而逆转了他的胰岛素需求。这导致了高血糖控制的显着改善,并修订了对成年人的潜在自身免疫性糖尿病(LADA)。最终在胰岛素治疗中重新开始,在逐渐增加血糖。LADA患者在开始抗血糖治疗(包括非胰岛素剂)后不久就会获得足够的血糖控制(2)。与此相一致的是,在LADA患者(如二肽基肽酶4抑制剂)(例如saxagliptin)或胰高血糖素(如肽1受体激动剂(例如,dulaglutide)(例如,dulaglutide)表现出数月和延迟的胰岛素进度(2 - 5),对此(例如肽酯)1受体激动剂(例如,dulaglutide)表现出改善(2 - 5)。重要的是,与上面更常用的药物类别相反,这种情况代表了自身免疫性糖尿病的DA受体激动剂单一疗法的第一个描述(1)。这些发现提出了有关生物学机制的重要问题,即d 2(例如受体激动剂)可以有效治疗血糖症,特别是在糖尿病的情况下。
在患有帕金森氏病的受试者中表明宿主疾病传播。自然医学,14(5),501–503。33。Kordower,J。H.,Chu,Y.,Hauser,R.A.,Freeman,T。B.,&Olanow,C。W.(2008)。 在帕金森氏病长期胚胎ni骨移植中的Lewy身体样病理学。 自然医学,14(5),504-506。 34。 Steiner,J。 A.,Quansah,E。和Brundin,P。(2018)。 α-突触核蛋白作为prion样蛋白的概念:十年后。 细胞和组织研究,373(1),161–173。 35。 Olanow,C。W.,Kordower,J。H.,Lang,A。E.和Obeso,J。 A. (2009)。 帕金森氏病的多巴胺能移植:当前的状态和未来前景。 神经病学年鉴,66(5),591–596。 36。 Galpern,W。R.,Corrigan-Curay,J.,Lang,A.E.,Kahn,J.,Tagle,D.,Barker,R.A. (2012)。 临床试验中的假神经外科手术疾病的神经外科疾病:科学和道德考虑。 柳叶刀神经病学,11(7),643–650。 37。 Smith,R.,Wu,K.,Hart,T.,Loane,C.,Brooks,D.J.,Björklund,A.,Odin,P.,Piccini,P。,&Politis,M。(2015年)。 苍白的血清素能功能在帕金森氏病障碍症中的作用:一项正电子发射断层扫描研究。 衰老的神经生物学,36(4),1736– 1742。 38。 胎儿细胞移植后的运动障碍:帕金森氏症:一项宠物研究。 39。Kordower,J。H.,Chu,Y.,Hauser,R.A.,Freeman,T。B.,&Olanow,C。W.(2008)。在帕金森氏病长期胚胎ni骨移植中的Lewy身体样病理学。自然医学,14(5),504-506。34。Steiner,J。A.,Quansah,E。和Brundin,P。(2018)。α-突触核蛋白作为prion样蛋白的概念:十年后。细胞和组织研究,373(1),161–173。35。Olanow,C。W.,Kordower,J。H.,Lang,A。E.和Obeso,J。 A. (2009)。 帕金森氏病的多巴胺能移植:当前的状态和未来前景。 神经病学年鉴,66(5),591–596。 36。 Galpern,W。R.,Corrigan-Curay,J.,Lang,A.E.,Kahn,J.,Tagle,D.,Barker,R.A. (2012)。 临床试验中的假神经外科手术疾病的神经外科疾病:科学和道德考虑。 柳叶刀神经病学,11(7),643–650。 37。 Smith,R.,Wu,K.,Hart,T.,Loane,C.,Brooks,D.J.,Björklund,A.,Odin,P.,Piccini,P。,&Politis,M。(2015年)。 苍白的血清素能功能在帕金森氏病障碍症中的作用:一项正电子发射断层扫描研究。 衰老的神经生物学,36(4),1736– 1742。 38。 胎儿细胞移植后的运动障碍:帕金森氏症:一项宠物研究。 39。Olanow,C。W.,Kordower,J。H.,Lang,A。E.和Obeso,J。A.(2009)。帕金森氏病的多巴胺能移植:当前的状态和未来前景。神经病学年鉴,66(5),591–596。36。Galpern,W。R.,Corrigan-Curay,J.,Lang,A.E.,Kahn,J.,Tagle,D.,Barker,R.A.(2012)。临床试验中的假神经外科手术疾病的神经外科疾病:科学和道德考虑。柳叶刀神经病学,11(7),643–650。37。Smith,R.,Wu,K.,Hart,T.,Loane,C.,Brooks,D.J.,Björklund,A.,Odin,P.,Piccini,P。,&Politis,M。(2015年)。苍白的血清素能功能在帕金森氏病障碍症中的作用:一项正电子发射断层扫描研究。衰老的神经生物学,36(4),1736– 1742。38。胎儿细胞移植后的运动障碍:帕金森氏症:一项宠物研究。39。MA,Y.,Feigin,A.,Dhawan,V.,Fukuda,M.,Shi,Q.,Greene,P.,Breeze,R.,Fahn,S.,Freed,C。,&Eidelberg,D。(2002)。 神经病学年鉴,52(5),628–634。 Barker,R。A. (2019)。 设计帕金森氏病的基于干细胞的多巴胺细胞替代试验。 自然医学,25(7),1045–1053。 40。 Williams-Gray,C。H.,Evans,J。R.,Goris,A.,Foltynie,T.,Ban,M.,Robbins,T。W.,Brayne,C.,Kolachana,B.S.,Weinberger,D.R. (2009)。 帕克森氏病的独特认知综合症:竞选队队的5年随访。 大脑,132(PT 11),2958–2969。 41。 Kelly,C。M.,Presixed,S.V.,Torres,E.M.,Harrison,A.W.,Williams,D.,Scherf,C.,Weyrauch,U.M.,Lane,E.L.,E.L.,E.L.,N.D. 妊娠的医学特征:用于神经退行性疾病的细胞替代疗法的可行组织。 细胞移植,20(4),503–513。 42。 Thomson,J。 A.,Iskovitz-Eldor,J.,Shapiro,S.S.,Waknitz,M.A.,Swiergiel,J.J.,Marshall,V.S。,&Jones,J.M。(1998)。 源自人胚泡的胚胎干细胞系。 Science,282(5391),1145–1147。 43。 高桥,K.,Tanabe,K.,Ohnuki,M.,Narita,M.,Ichisaka,T.,Tomoda,K。,&Yamanaka,S。(2007)。 通过定义的因素从成年人类成纤维细胞中诱导多能干细胞。 细胞,131(5),861–872。 44。 A. (2001)。MA,Y.,Feigin,A.,Dhawan,V.,Fukuda,M.,Shi,Q.,Greene,P.,Breeze,R.,Fahn,S.,Freed,C。,&Eidelberg,D。(2002)。神经病学年鉴,52(5),628–634。Barker,R。A.(2019)。设计帕金森氏病的基于干细胞的多巴胺细胞替代试验。自然医学,25(7),1045–1053。40。Williams-Gray,C。H.,Evans,J。R.,Goris,A.,Foltynie,T.,Ban,M.,Robbins,T。W.,Brayne,C.,Kolachana,B.S.,Weinberger,D.R.(2009)。帕克森氏病的独特认知综合症:竞选队队的5年随访。大脑,132(PT 11),2958–2969。41。Kelly,C。M.,Presixed,S.V.,Torres,E.M.,Harrison,A.W.,Williams,D.,Scherf,C.,Weyrauch,U.M.,Lane,E.L.,E.L.,E.L.,N.D.妊娠的医学特征:用于神经退行性疾病的细胞替代疗法的可行组织。细胞移植,20(4),503–513。42。Thomson,J。A.,Iskovitz-Eldor,J.,Shapiro,S.S.,Waknitz,M.A.,Swiergiel,J.J.,Marshall,V.S。,&Jones,J.M。(1998)。 源自人胚泡的胚胎干细胞系。 Science,282(5391),1145–1147。 43。 高桥,K.,Tanabe,K.,Ohnuki,M.,Narita,M.,Ichisaka,T.,Tomoda,K。,&Yamanaka,S。(2007)。 通过定义的因素从成年人类成纤维细胞中诱导多能干细胞。 细胞,131(5),861–872。 44。 A. (2001)。A.,Iskovitz-Eldor,J.,Shapiro,S.S.,Waknitz,M.A.,Swiergiel,J.J.,Marshall,V.S。,&Jones,J.M。(1998)。源自人胚泡的胚胎干细胞系。Science,282(5391),1145–1147。43。高桥,K.,Tanabe,K.,Ohnuki,M.,Narita,M.,Ichisaka,T.,Tomoda,K。,&Yamanaka,S。(2007)。 通过定义的因素从成年人类成纤维细胞中诱导多能干细胞。 细胞,131(5),861–872。 44。 A. (2001)。高桥,K.,Tanabe,K.,Ohnuki,M.,Narita,M.,Ichisaka,T.,Tomoda,K。,&Yamanaka,S。(2007)。通过定义的因素从成年人类成纤维细胞中诱导多能干细胞。细胞,131(5),861–872。44。A.(2001)。Zhang,S.-C.,Wernig,M.,Duncan,I.D.,Brüstle,O。,&Thomson,J.在人类胚胎干细胞中的移植神经性神经术的体外分化。 自然生物技术,19(12),1129–1133。 45。 Perrier,A。L.,Tabar,V.,Barberi,T.,Rubio,M.E.,Bruses,J.,Topf,N.,Harrison,N。L.,&Studer,L。(2004)。 中脑多巴胺神经元来自人类胚胎干细胞。 美国国家科学院会议录,101(34),12543-12548。 46。 Sonntag,K.-C.,Pruszak,J.,Yoshizaki,T.,Van Arensbergen,J.,Sanchez- Pernaute,R。,&Isacson,O。 (2007)。 使用骨形态学蛋白拮抗剂Noggin noggin,神经上皮上的前体和中脑样多巴胺能神经元的产率提高。 干细胞,25(2),411–418。 47。 sánchez-Pernaute,R.,Studer,L.,Bankiewicz,K。S.,Major,E。O.,&McKay,R。D. G.(2001)。 体外产生和前体衍生的人多巴胺神经元的移植。 神经科学研究杂志,65(4),284–288。 48。 Kim,J.-H.,Auerbach,J.M.,Rodríguez-Gómez,J. A.,Velasco,I.,Gavin,D.,Lumelsky,N. 源自的多巴胺神经元在人类胚胎干细胞中的移植神经性神经术的体外分化。自然生物技术,19(12),1129–1133。45。Perrier,A。L.,Tabar,V.,Barberi,T.,Rubio,M.E.,Bruses,J.,Topf,N.,Harrison,N。L.,&Studer,L。(2004)。中脑多巴胺神经元来自人类胚胎干细胞。 美国国家科学院会议录,101(34),12543-12548。 46。 Sonntag,K.-C.,Pruszak,J.,Yoshizaki,T.,Van Arensbergen,J.,Sanchez- Pernaute,R。,&Isacson,O。 (2007)。 使用骨形态学蛋白拮抗剂Noggin noggin,神经上皮上的前体和中脑样多巴胺能神经元的产率提高。 干细胞,25(2),411–418。 47。 sánchez-Pernaute,R.,Studer,L.,Bankiewicz,K。S.,Major,E。O.,&McKay,R。D. G.(2001)。 体外产生和前体衍生的人多巴胺神经元的移植。 神经科学研究杂志,65(4),284–288。 48。 Kim,J.-H.,Auerbach,J.M.,Rodríguez-Gómez,J. A.,Velasco,I.,Gavin,D.,Lumelsky,N. 源自的多巴胺神经元中脑多巴胺神经元来自人类胚胎干细胞。美国国家科学院会议录,101(34),12543-12548。46。Sonntag,K.-C.,Pruszak,J.,Yoshizaki,T.,Van Arensbergen,J.,Sanchez- Pernaute,R。,&Isacson,O。(2007)。使用骨形态学蛋白拮抗剂Noggin noggin,神经上皮上的前体和中脑样多巴胺能神经元的产率提高。干细胞,25(2),411–418。47。sánchez-Pernaute,R.,Studer,L.,Bankiewicz,K。S.,Major,E。O.,&McKay,R。D. G.(2001)。体外产生和前体衍生的人多巴胺神经元的移植。神经科学研究杂志,65(4),284–288。48。Kim,J.-H.,Auerbach,J.M.,Rodríguez-Gómez,J. A.,Velasco,I.,Gavin,D.,Lumelsky,N. 源自的多巴胺神经元Kim,J.-H.,Auerbach,J.M.,Rodríguez-Gómez,J.A.,Velasco,I.,Gavin,D.,Lumelsky,N.源自
本文探讨了神经递质多巴胺、谷氨酸和γ-氨基丁酸 (GABA) 导致精神分裂症的假设,并得出结论:谷氨酸影响多巴胺和 GABA 的联合模型是最合理的解释机制。多巴胺假说得到了证据的支持,即精神分裂症患者的特定大脑区域的多巴胺受体和神经递质明显增加和减少。此外,针对多巴胺受体的药物已成功减轻了精神分裂症症状。谷氨酸假说认为神经递质谷氨酸是这种疾病的基础,因为影响 NMDA(谷氨酸)受体已被证明会导致积极和消极的精神分裂症症状,包括仅在精神分裂症中出现的视觉和听觉症状。此外,与 NMDA 受体和精神分裂症相关的几个基因存在遗传关联。 GABA 模型也被探索,因为篡改与 GABA 相关的细胞已被证明会诱发精神分裂症症状,尽管这可以解释为与谷氨酸模型的结合,而不是对立。单独考虑时,这些假设是有缺陷的。多巴胺模型无法解释负面的精神分裂症症状,针对多巴胺受体的药物仍然无法完全减轻自我报告的症状。同样,谷氨酸模型可能是由不规则的 GABA 量引起的,谷氨酸假说也可能解释针对多巴胺的治疗的积极作用。有证据表明,导致 NMDA 受体功能下降的药物会导致多巴胺功能障碍。结合多巴胺和谷氨酸参与的有力证据,最合理的模型是 NMDA 功能障碍导致 GABA 和多巴胺受体问题。
数十年的研究将多巴胺神经元视为大脑的奖励中心,虐待药物“劫持”会导致成瘾。的确,尼古丁在腹侧偏段区域多巴胺神经元上作用于烟碱乙酰胆碱受体,以增加多巴胺的释放,从而增加奖励和愉悦感。然而,最近的研究表明,多巴胺神经元的一部分信号厌恶,这与普遍认为多巴胺神经元仅介导奖励的普遍看法相反。在高剂量下,尼古丁是厌恶的,并且了解这种剂量依赖性转换如何导致治疗尼古丁成瘾的新见解。为了剖析介导尼古丁厌恶作用的神经回路,我对VTA多巴胺神经元,其输入的详细解剖学,电生理和行为研究进行了详细的解剖学,电生理和行为研究。使用体内钙成像,我证明了高剂量的尼古丁通过在规范奖励信号的侧侧侧侧途径中抑制DA释放来编码厌恶,并通过增加厌恶信号的中间途径中的DA释放来编码厌恶。i将脑干的后dodorsal temgentum(LDT)引入了VTA,该抑制作用在刺激时驱动厌恶行为并被厌食剂量激活的尼古丁剂量激活。重要的是,与完整的LDT的动物相比,当胃核中的染色较差时,我观察到了伏托核的钝性染色,这是对厌恶性尼古丁的响应。一起,这项工作提供了对电路机制的新颖见解,即高剂量的尼古丁如何通过增加厌恶信号传导和减少奖励信号传导来引起厌恶,并且在尼古丁反应的背景下,脑干的抑制性输入可能是中元途径的重要调节剂。
蚜虫是全球大多数农作物的主要害虫。它们如此成功很大程度上是由于它们生殖方式的可塑性。它们在春季和夏季通过胎生孤雌生殖有效地繁殖,对农作物造成严重损害。夏末,胎生孤雌生殖雌性感知到光周期的缩短,并将此信号传递给胚胎,从而改变其生殖命运,产生有性个体:卵生雌性和雄性。交配后,这些雌性会产下抗寒的卵。早期研究表明,一些编码多巴胺通路关键成分的转录本在长日照和短日照条件下受到调控,这表明多巴胺可能参与了生殖模式转换之前季节性信号的传导。在本研究中,我们旨在更深入地表征该通路的表达动力学,并分析其在豌豆蚜虫 Acyrthosiphon pisum 中的功能作用。我们首先分析了在长日照(无性生殖)或短日照(有性生殖)条件下饲养的蚜虫胚胎和幼虫头中该通路的十个基因的表达水平。然后,我们进行了原位杂交实验,以在胚胎中定位编码多巴胺合成中两种关键酶的 ddc 和 pale 转录本。最后,在有性个体交配后产生的卵子中使用 CRISPR-Cas9 诱变,我们针对 ddc 基因进行了诱变。我们可以在 ddc 突变卵子中观察到强烈的黑色素化默认值,这些卵子可靠地模仿了果蝇 ddc 表型。然而,这种致命的表型使我们无法验证多巴胺作为触发胚胎生殖模式转换所必需的信号通路的参与。