排放帽可以鼓励该行业采用节能实践,从而促进可持续AI技术的创新。此外,与AI相关的碳指标可以协助决策者制定有效的标准,以确保随着AI的发展,其环境成本得到了控制,为可持续的AI未来铺平了道路。
恶性胸膜间皮瘤(MPM)是缺乏有效治疗的胸膜癌。使用溶瘤疫苗病毒(VV)的溶瘤免疫治疗可能代表一种治疗这种迹象的替代治疗方法。在这里,我们研究了VV百点激酶(TK) - 核糖核苷酸还原酶(RR) - /绿色荧光蛋白(GFP)的溶瘤活性。该病毒是哥本哈根菌株的VV,该VV由编码TK(J2R)和RR(I4L)的两个基因删除,并表达GFP。首先,我们在体外表明VV TK-RR-/GFP有效地感染并杀死了本研究中使用的22个人MPM细胞系。我们还表明,该病毒在所有八个测试的MPM细胞系中都复制,但是,从一个细胞系到另一个细胞系,在扩增水平上大约有10倍的差异。然后,我们研究了伴有腹膜腹膜人类MPM Tumors的非肥胖糖尿病(NOD)严重合并免疫(SCID)小鼠的VV TK-RR-/ GFP的治疗效率。与未经治疗的动物相比,VV TK-/GFP的一种腹膜内感染会导致肿瘤负担,显着增加小鼠的存活。因此,VV TK-RR-可能是MPM溶瘤免疫疗法的有前途的溶瘤病毒(OV)。
以下是接受项目的列表。这不是详尽的列表。家庭危险废物(HHW)粘合剂。溶剂。油漆,油漆更薄。污渍。腻子,填缝。油漆和污渍脱衣舞娘。排干清洁剂。池化学品。抗冻结。液压流体。清洁产品。木材防腐剂。肥料,除草剂,除草剂。农药,啮齿动物,杀虫剂。玻璃纤维和环氧树脂。汽车和海洋维护护理产品。腐蚀(鼠酸,碱液)。屋顶焦油,密封剂,补丁化合物。荧光,CFL灯泡。烤架和露营尺寸的丙烷缸汽油,柴油,煤油 - 最多5加仑,必须容忍。废油(烹饪,汽车,海洋)最多需要5加仑。含有物品的汞(温度计,某些灯泡)。电子废物(电子废物)电视。打印机。传真机。电路板。手机。收音机。计算机(台式机和笔记本电脑)。监视器。硬盘驱动器。遥控器。游戏系统。电池锂离子(锂离子)。镍 - 瓦(NICD)。镍锌(Ni-Zn)。镍金属氢化物(Ni-MH)。小密封铅酸(SSLA/PB)。Common items that contain hazardous batteries, laptops, tablets, Bluetooth devices, power tools, remote car keys, vaping and e-cigarette devices, game controllers, digital cameras, portable power packs, singing, light-up greeting cards, electric toothbrushes, toys, medical devices, smoke, fire, carbon monoxide detectors, e-bikes, e-scooters, hoverboards, powered air清新剂。
2。背景是劳伦斯大湖(Laurentian Great Lakes) - 密歇根州,休伦(Huron),伊利(Huron),伊利(Huron)和安大略省(Erio)的湖泊湖泊是世界上最大的淡水湖泊,总面积是地球地表淡水的21%。除了它们相当大的规模外,大湖还为美国和加拿大超过4000万人提供了关键资源。他们提供饮用水,支持商业和娱乐钓鱼,促进交通和商业,并为旅游,娱乐和与大自然建立联系提供机会。大湖还通过支持广泛的相互联系的生态系统来丰富区域生物多样性。由两个邻国合作管理,该动态系统代表了国际水和生态管理的案例研究,并用作了解全球水生,陆地和气候系统的关键测试。许多不同的地方,州,联邦和部落政府机构,非营利组织,学术机构,私人实体和社区利益相关者都参与了大湖区的复杂科学和管理环境。例如,国际联合委员会(IJC)协调美国和加拿大之间的水管理和水质努力,反映了他们对用水和安全的相互责任。各种联邦机构,区域财团和国家实验室已经开发了包括浮标,船队,通量塔和遥感功能在内的区域,最先进的监测网络。诸如大湖修复计划等倡议,值得注意的组织包括加拿大环境保护局,环境和气候变化,国家海洋与大气管理局(NOAA)大湖环境研究实验室(GLERL),大湖研究所(CIGLR)(CIGLR)和大湖观察系统(GLOS)(GLOS)。
Qubit读数是任何量子信息处理器中必不可少的元素。在这项工作中,我们在实验中证明了transmon和Polarmon模式之间的非扰动交叉kerr耦合底,该模式可以改善量子非态度(QND)读数,用于超导速度。新机制使用与分散近似中的标准QND量子读数相同的实验技术,但由于其非扰动性质,它最大化了速度,单发忠诚度和读取的QND属性。此外,它可以最大程度地减少不需要的衰减通道的影响,例如purcell效应。我们观察到短50 ns脉冲的单次读数保真度为97.4%,并且对长度测量脉冲的QND度为99%,并具有重复的单发读数。
大型真核基因组被包装到核的受限区域中,以保护遗传密码并提供一个专门的环境来读取,复制和修复DNA。基因组在染色质环和自我相互作用域中的物理组织提供了基因组结构的基本结构单位。这些结构排列是复杂的,多层的,高度动态的,并且影响了基因组的不同区域如何相互作用。通过增强剂促进剂相互作用在转录过程中的作用已得到很好的确定。不太了解的是核结构如何影响DNA复制和修复过程中染色质交易的大量交易。在这篇综述中,我们讨论了在细胞周期中如何调节基因组结构,以影响复制起源的定位和DNA双链断裂修复的协调。基因组结构在这些细胞过程中的作用突出了其在保存基因组完整性和预防癌症的关键参与。
摘要:高性能计算(HPC)的局限性严重制约着数值模型的发展。传统数值模型通常采用双精度来保证结果的准确性,但这种做法计算成本较高。虽然使用较低的精度可以大幅降低计算成本,但可能会引入舍入误差,这在特定条件下会影响精度。准双精度算法(QDP 算法)通过保留修正值来补偿这些舍入误差,从而提高结果精度。为了探究该算法对提高数值模型结果精度的有效性,本文将其应用于单精度版本的跨尺度预测模型——大气(MPAS-A),并在两个理想情况和两个真实数据案例中评估其性能。结果表明,应用QDP算法在三种情况下可使表面压力偏差分别降低68%、75%、97%和96%。与双精度试验相比,运行时间分别减少了28.6%、28.5%、21.1%和5.7%。本研究表明,QDP算法为数值模型提供了有效且经济的计算能力。
光刺激(来自数字微型摩尔设备的2-D灯罩用固态CW激光照明)和两个光子成像仅限于不同的光学Z-Planes,可以通过分别翻译扩散器和主要目标来灵活,独立地调整这些光学Z-plan。 (底部)在光刺激和成像期之间交替(滚动)。每个红色条代表一个多光子成像的单一框架。光刺激和成像期交错。(b)显微镜示意图。dm,二分色镜。dmd,数字微型摩尔设备。i,虹膜膜片。L1-L12,镜头。o,主要目标。PMT,光电倍增管。PS,潜望镜。s,快门。SM,扫描镜子。(c)(顶部)使用可移动扩散器将图案化的光刺激和多光子成像平面解)的例证。以4F镜头配置将扩散器成像成样品中;沿光路的扩散器转换会导致相应的投影平面轴向移动。OFP,客观焦平面。 PSP,光刺激平面。 (d)DMD芯片到CCD摄像头到2P显微镜注册。 我们注册了DMD刺激场(DMD像素尺寸= 2.4 µm,样品 1d)至148OFP,客观焦平面。PSP,光刺激平面。(d)DMD芯片到CCD摄像头到2P显微镜注册。我们注册了DMD刺激场(DMD像素尺寸= 2.4 µm,样品1d)至148(i)两个光子显微照片,分别为10 µm荧光微粒;箭头标记了两个微粒,这是较大的DMD调节投影靶模式(8 microbeads)的一部分,它们被视为受托点; (ii)更大的视野(包括目标微头)的广阔场荧光图像(全场照明); (iii)从2p图像中选择的ROI用于生成DMD-Chip灯罩;这些进一步投影在主要的客观焦平面上,并使用主CCD摄像头(CCD 1)成像; (iv)DMD生成的照片刺激口罩和(II)中10 µm微粒的宽场荧光图像的覆盖层;请注意,荧光仅限于由DMD光刺激掩模靶向的微粒,并具有最小的溢出到相邻(靶)的微粒(请参阅信托标记)。