结构稳定性是航空航天、土木工程和机械工程等多个工程专业课程的基础硕士课程。该学科的目标是开发在不同载荷作用下结构稳定性的分析方法,以用于结构元件的设计[1]。在航空航天工程的背景下,结构稳定性硕士课程介绍了常见航空航天结构元件(如梁、板和壳)的屈曲现象[2]。在正常授课中,学生将学习控制每个结构元件屈曲的方程的解析推导。这些数学表示总结和组织了有关现象的定量信息,例如变量之间的关键关系。然而,解析推导表现出高度的数学形式主义、抽象性和复杂性[3]。因此,授课往往侧重于数学程序,而不是它们所代表的物理现象。此外,这些方程式无法为从未经历过屈曲的学生提供完整的物理现象图景[4]。因此,学生往往难以将数学表达式与真实世界场景联系起来,也难以理解结构元件的屈曲行为[3]。为了克服这些限制,可以将屈曲试验演示作为常规教学的补充活动。事实上,实验室试验重现了物理现象[5],因此为学生提供了一个环境,让他们直接体验结构的屈曲,并与不同于分析模型的表达式进行互动。因此,本研究的目的是提供一个原理证明
轻,热或湿度。15,47–49,例如,先前的研究表明,在均匀的光照射或升高温度下,圆柱形单域LCE杆可以连续滚动在平坦的表面(最高6 mm S 1)上。 47可以通过结合热刺激和光刺激来进一步控制滚动运动。 同样,通过基于纤维的执行器证明了受控运动,例如平坦和倾斜表面上的光启动(在速度上达到1.7 mm S 1的速度,最大的工作密度为0.179 kj kg 1,功率密度为24.28 w kg 1),以提高其额外的稳定性capabil-Ities iesies iesies shoundlyplys themplys themply。 当尼龙和聚二甲基硅氧烷(PDMS)纤维(4 mM S 1)放置在加热板上时,也观察到了15个不同的滚动行为(同时将弹性能量密度存储为300 kJ m 3)。 48,49 Other works on soft actuators investigate rectilinear motion, such as the curling of polyurethane (PU) hydrogel strips, 50 the crawling of LC network films 51 and the squeezing of arc-shaped robots made from LCE–carbon nanotubes 52 using ‘‘bow-shaped'' bimorph actuators that bend or ‘‘ring-shaped'' actuators that roll. 这些实验为设计和制造多功能软机器人车奠定了坚实的基础。 在轻度,热或湿度驱动的软机器人中自动滚动的实验生动地证明了各种运动机制,吸引了分析或数值分析这些行为的理论家的注意。15,47–49,例如,先前的研究表明,在均匀的光照射或升高温度下,圆柱形单域LCE杆可以连续滚动在平坦的表面(最高6 mm S 1)上。47可以通过结合热刺激和光刺激来进一步控制滚动运动。同样,通过基于纤维的执行器证明了受控运动,例如平坦和倾斜表面上的光启动(在速度上达到1.7 mm S 1的速度,最大的工作密度为0.179 kj kg 1,功率密度为24.28 w kg 1),以提高其额外的稳定性capabil-Ities iesies iesies shoundlyplys themplys themply。当尼龙和聚二甲基硅氧烷(PDMS)纤维(4 mM S 1)放置在加热板上时,也观察到了15个不同的滚动行为(同时将弹性能量密度存储为300 kJ m 3)。48,49 Other works on soft actuators investigate rectilinear motion, such as the curling of polyurethane (PU) hydrogel strips, 50 the crawling of LC network films 51 and the squeezing of arc-shaped robots made from LCE–carbon nanotubes 52 using ‘‘bow-shaped'' bimorph actuators that bend or ‘‘ring-shaped'' actuators that roll.这些实验为设计和制造多功能软机器人车奠定了坚实的基础。在轻度,热或湿度驱动的软机器人中自动滚动的实验生动地证明了各种运动机制,吸引了分析或数值分析这些行为的理论家的注意。已经开发了一种耦合的照片化学或热机械模型,以说明通过
定义或规定了Ridgeline或Ridge-top的定义,该定义称为“关注区域”。只有在他们的会议上,他们才被指向在博尔顿镇的全面计划和小村庄战略计划中确定的这一目标。因此,我们努力将提出的开发项目的描述纳入了提出的描述中,这些开发项目表明了如何以综合计划指导的方式保留山脊/山坡。具体来说,正如全面的计划表明,我们提交了横截面图,这些图表明,拟议的房屋将位于树线后面,不会弄清山脊,并且仍将保持山脊山顶的背景。在综合计划中认识到,可以以这种方式进行发展,因为维持自然植被确实保留了山坡特征。
超材料是人为设计的材料,旨在具有天然材料中未发现的电磁场的性质。各向异性超材料的电磁特性取决于方向,这为它们提供了控制传统材料无法控制波动的能力。这些属性就像在大规模影响波传播的超材料元件之间的复杂相互作用,例如分散,衰减和波浪的极化[6]。各向异性超材料由定向电导率,渗透率和介电量张量定义。与典型的各向同性材料不同,这些参数不是不变的;相反,它们是方向依赖性的,因此导致材料内部的波浪行为复杂。上述特征可以由张量表示,张量概述了多维材料波相互作用[7]。
注意:请注意,本文件可能不是作品的记录版本(即已发布的版本)。作者手稿版本(提交同行评审或同行评审后接受出版)可以通过缺少出版商品牌和/或排版外观来识别。如果有任何疑问,请参考已发布的来源。
I. 引言 全球对清洁和可再生能源的需求能够最好地应对日益增长的燃料消耗问题,这促进了储能系统的使用。文献中介绍了具有不同特性和容量的不同类别的电池 [1]–[3]。锂离子电池的高能量密度和重量轻使其成为储能市场的主导者,尤其是在汽车应用方面 [4]。锂离子电池的安全运行需要管理其在充电和放电过程中的温度变化。高温会损坏储能系统甚至引起爆炸,而低温会对电池造成不可逆转的损坏 [5]。因此,为确保锂离子电池的正常运行,应将温度保持在 15°C 至 35°C 的最佳范围 [6]。能够散发产生的热量的热管理系统对锂离子电池至关重要。适当的冷却方法有助于管理电池的热行为,提高安全性和使用寿命。它确保电池组内部温度分布均匀,避免局部性能下降,并散发产生的热量,以保持电池组内部温度处于最佳范围 [7]。适当的冷却方法可以提高安全性并延长电池寿命。
连续体(BICS)中的结合状态是零宽(有限的寿命),即使它们与连续的扩展状态共存,但仍在系统中仍然存在的特征模式。产生的高频共振可能在光子整合电路,过滤,传感和激光器中具有显着应用。在本文中,我们证明了基于光子三轴腔的简单设计可以同时显示Fabry-Pérot(FP)和Friedrich-Wintgen(FW)BICS,并且它们的出现非常依赖于将腔附着在外部介质上的方式。我们首先考虑一个对称腔,其中长度D 3的存根被两个长度D 2的存根包围,所有存根均由长度D 1的段隔开。当两个端口之间插入腔时,我们在理论上证明了在长度d 1,d 2 2和d 3之间的可辨式条件下,在实验上证明了FP类型的对称BIC(S-BIC)和抗对称BIC(AS-BIC)的存在。S-BIC和AS-BIC可能会彼此交叉,从而产生双重变性的BIC。通过打破腔体的对称性,AS-BICS和S-BIC可以融合在一起,并实现FW型BIC,其中一种共振保持为零,而另一个共振却宽阔。通过考虑另外的两个配置,其中三端腔与一个或两个端口仅在一个侧连接起来,可以在结构内部诱导其他BIC。通过略微使BIC条件略有失调,后者转变为电磁诱导的透明度 /反射或FANO共振。最后,可以设计这种三重速度腔,以实现某些频率的接近完美吸收。使用同轴电缆在辐射频域中通过实验确认了从绿色功能方法获得的所有分析结果。
免疫力我们正在寻求一个高度积极进取的博士后研究员,以研究免疫系统代谢调节的基本方面。该项目旨在了解从宿主,饮食或微生物组衍生的代谢产物如何塑造组织居住的免疫细胞的生物学和代谢(例如,t细胞,先天淋巴样细胞(ILC))。特别是该作品旨在确定饮食的方式(例如高脂饮食,生酮饮食),饮食成分,运动和代谢物调节肥胖,慢性炎症和感染的免疫反应(Karagiannis等人免疫2020,Karagiannis等。自然2022,Theodorou等。Biorxiv 2024)。要将发现转化为人类患者,该项目将利用与临床医生的既定合作。候选人将有机会获得额外的外部资金,并在博士后培训期间制定独立的研究计划。,我们正在寻找一位热情的科学家,他们渴望作为一个友好和支持团队的一部分从事一个充满挑战和有益的项目。申请人拥有博士学位。预计将在六个月内获得学位的学位和研究生。理想的候选人将具有免疫学,组织生物学或细胞代谢的背景。在使用动物模型,组织(肺,肠),人体组织样本,多参数流式细胞术,分子生物学和荧光成像的经验。我们提供:我们提供跨学科的研究环境,促进创新和协作,并致力于对下一代科学家的培训和职业发展。该职位在最初的三年内可用,并有可能扩展。
如果可持续性仅从环境这一单一维度来考虑,那么它就会受到限制,尤其是在我们业务模式的物流方面。但可持续性不仅限于二氧化碳排放和资源保护。它具有环境、社会和经济层面。我们的目标是在公司力所能及的范围内发挥我们的影响力,从而为可持续的未来做出贡献。我们的动机是内在的——对于 PICARD 的管理人员和员工来说,可持续性和为当代和后代保持高品质的生活是我们的本心。我们接受对员工及其家人、直接环境以及对整个社会的全球责任,我们打算履行这些责任。同时,作为一家德国公司,我们也受到法律和规范要求的外在激励,以遵守法规和指令,并透明地陈述和积极追求具体的目标和措施。我们的供应商、客户和申请人也越来越关注可持续性标准。满足这些期望是我们的目的,也是我们的义务。
影响疾病的严重程度,进而影响辐射灵敏度的程度。在不同突变的患者中观察到辐射敏感性的这种变异性,反映了这些遗传变化对病情的多种影响(29)。目前对具有多种突变的患者的DSB修复效率和辐射敏感性的研究目前有限或不可用。