摘要 - 电子产品越来越容易受到硅内能量颗粒相互作用的影响。为了在辐射效应下提高电路可靠性,在VLSI系统的设计流中采用了几种硬化技术。本文提出了逻辑门中的PIN分配优化,以减少单个事件瞬态(SET)横截面并提高轨内软率。信号概率传播用于通过重新交换或引脚交换将最低概率分配给电路最敏感的输入组合。细胞优化的软率最高可降低48%。对于分析的算术基准电路,优化的细胞网列在设置的横截面和轨内软校正速率上可以在电路设计区域内无需成本降低8%至28%。另外,由于引脚交换是一种布局友好的技术,因此优化不会影响细胞放置,并且可以与逻辑和物理合成中的其他硬化技术一起采用。
人类癌细胞系的药物敏感性预测模型构成了在临床前环境中识别潜在反应性因素的重要工具。整合从一系列异质数据中得出的信息至关重要,但仍然是不平凡的,因为数据结构的差异可能会阻碍拟合算法将足够的权重分配给不同的OMIC数据中包含的互补信息。为了抵消这种效果,该效果倾向于仅导致一种数据类型主导所谓的多摩斯模型,我们开发了一种新颖的工具,使用户能够在第一步中分别训练单摩尼斯模型,并在第二步中将它们集成到多摩s模型中。进行了广泛的消融研究,以促进对奇异数据类型及其组合的各自贡献的深入评估,从而有效地识别它们之间的冗余和相互依赖性。此外,单词模型的集成通过一系列不同的分类算法实现,从而可以进行性能比较。被发现与药物敏感性显着转移相关的分子事件和组织类型集可以返回,以促进对药物反应性潜在驱动因素的全面而直接的分析。我们的两步方法产生了一组实际的多媒体泛 - 批处理分类模型,这些模型对GDSC数据库中的大多数药物具有很高的预测。在具有特定作用模式的有针对性药物的背景下,其预测性能与将多词数据合并到简单的一步方法中的分类模型相比。此外,案例研究表明,它在正确识别已知的特定药物化合物的关键驱动因素以及为其他候选者提供其他药物敏感性因素方面取得了成功。
可扩展,安全和适应AI,虚拟化和实时数据处理轴向AX300是一个高度可配置的边缘计算平台,旨在处理IT/OT环境中的复杂工作负载。其灵活的体系结构支持AI,机器学习,数据分析和虚拟化,使其非常适合工业自动化,智能城市和关键基础架构。具有高级安全功能,包括TPM和加密,可确保数据完整性和保护。轴向AX300提供远程管理功能,可从任何地方进行无缝部署,监视和更新。其可扩展设计支持大型语言模型推断和边缘的实时数据处理。为在恶劣环境中的可靠性中构建,轴向AX300提供了低延迟,有效的计算,桥接云和边缘智能为下一代AI驱动的决策和自主系统提供动力。
虽然最近在代理[9]和机器人文献[24]中进行手势合成的工作已将手势视为共同语音,因此依赖于口头话语,我们提供了表明手势可以利用模型上下文的证据(即导航任务),不仅取决于口头话语。这种效果在含糊不清的口头话语中尤为明显。将这种依赖性解耦可能会使未来的系统能够综合澄清手势,这些手势阐明了模棱两可的口头话语,同时使研究能够更好地理解手势的语义。我们从这个领域中的经验中汇集了证据,使我们能够首次看到需要开发哪种端到端的关注模型,以合成一声互动的手势,同时仍然可以保留用户的结果并允许机器人模棱两可。我们在“基本方向手势计划”的背景下讨论这些问题,该指示指的是人类将来必须遵循的行动。
这种强大的深度学习模型受益于TSIA团队也开发的超快光学成像技术。“这项技术使我们能够以极高的速度捕获手机图像。每天都可以生成数千万的图像。因此,利用这一单个系统,我们处于许多AI创新中,我们处于一个独特的位置,以加速先进的AI R&D,从培训,优化到部署,”
这项研究表明,除其他外,混合购物者(将其购买在线和店内渠道之间划分的人都是订阅服务中最活跃的用户,亚马逊Prime以66%的渗透率领先市场。沃尔玛+的次数为26%,而批发俱乐部会员的立足点为56%。
旅游业推动了新西兰的就业机会,并提升了今天发布的经济数字显示,游客经济直接或间接地使用了303,420名新西兰人。旅游卫星帐户(TSA)重申了旅游业作为新西兰经济的主要贡献者的重要作用,从距离全国各地的一年中的游客支出中产生了444亿美元。“最重要的大新闻是,尽管猕猴桃的支出减少,但国际游客为我们的经济提供了重要的刺激。这也表明,旅游业正在招聘和创造积极的就业机会。“这些数字的意思是我们国家许多企业和人们的个人努力,交付Manaakitanga的动力以及他们的辛勤工作如何使整个新西兰的益处取得成果。”今天公告的头条新闻包括:
摘要 - 视频游戏和虚拟现实体验中虚拟角色的示威行为是现实主义和沉浸式的关键因素。的确,目光在与环境互动时扮演着许多角色。它不仅表明了角色在看什么,而且在言语和非语言行为以及使虚拟字符还活着中起着重要作用。凝视行为的自动计算是一个具有挑战性的问题,迄今为止,现有方法都无法在交互式环境中产生近实现的结果。 因此,我们提出了一种新型方法,该方法利用了与视觉显着性,注意力机制,accadic行为建模和头部凝视动画技术有关的几个不同领域的最新进展。 我们的方法阐明了这些进步,以收敛于多映射显着驱动的模型,该模型为非交流字符提供实时现实的凝视行为,以及与可自定义功能相比,其他用户控制,以构成各种各样的结果。 我们首先通过客观评估评估我们的方法的好处,该评估使用专门为此目的获得的眼睛跟踪数据集面对地面真理数据面对我们的视线模拟。 然后,与从真实演员捕获的凝视动画相比,我们依靠主观评估来衡量我们方法产生的凝视动画的现实水平。 我们的结果表明,我们的方法会生成视力行为,这些行为无法与捕获的凝视动画区分开。凝视行为的自动计算是一个具有挑战性的问题,迄今为止,现有方法都无法在交互式环境中产生近实现的结果。因此,我们提出了一种新型方法,该方法利用了与视觉显着性,注意力机制,accadic行为建模和头部凝视动画技术有关的几个不同领域的最新进展。我们的方法阐明了这些进步,以收敛于多映射显着驱动的模型,该模型为非交流字符提供实时现实的凝视行为,以及与可自定义功能相比,其他用户控制,以构成各种各样的结果。我们首先通过客观评估评估我们的方法的好处,该评估使用专门为此目的获得的眼睛跟踪数据集面对地面真理数据面对我们的视线模拟。然后,与从真实演员捕获的凝视动画相比,我们依靠主观评估来衡量我们方法产生的凝视动画的现实水平。我们的结果表明,我们的方法会生成视力行为,这些行为无法与捕获的凝视动画区分开。总的来说,我们认为这些结果将为实时应用程序的现实和连贯凝视动画的更自然和直观设计开辟道路。
研究人员能够通过将物理学与生物学结合的模型预测生活成本。合着者和墨尔本大学的研究员迈克尔·科尔尼(Michael Kearney)教授说,他们能够测试对历史领域数据的模型预测,以量化气候变暖如何影响各大洲的沙漠爬行动物。
摘要生态系统服务部分源自生物学多样性,是对人类社会的基本支持。但是,人类活动对生物多样性造成了损害,最终危害了这些关键的生态系统服务。停止自然损失并减轻这些影响需要全面的生物多样性分配数据,这是实施Kunming-Montreal全球生物多样性框架的要求。为了有效地从公众那里收集物种观察,我们在日本启动了“生物群体”移动应用程序。通过采用物种识别算法和游戏化元素,该应用程序自2019年推出以来已收集> 600万的观察结果。但是,社区采购的数据经常表现出空间和分类偏见。物种分布模型(SDMS)在适应这种偏见的同时推断物种分布。我们研究了Biome数据的质量以及合并数据如何影响SDM的性能。物种鉴定精度超过鸟类,爬行动物,哺乳动物和两栖动物的95%,但是种子植物,软体动物和鱼类得分低于90%。对日本的132种陆地动植物的分布进行了建模,并通过将我们的数据纳入传统的调查数据来提高其准确性。对于濒危物种,传统的调查数据需要> 2,000个记录以构建准确的模型(Boyce指数≥0.9),尽管将两个数据源混合在一起时仅需要CA.300记录。独特的数据分布可能解释了这一进步:生物群落数据统一涵盖了城市 - 自然梯度,而传统数据则偏向自然区域。将多个数据源结合起来提供了对日本物种分布的见解,有助于保护区域名称和生态系统服务评估。提供一个平台来积累社区来源的分布数据和改进数据处理协议,不仅有助于保存自然生态系统,还将有助于检测物种分布变化和测试生态理论。
