已建立的技术:超过45个国家已经将DHIS2用于其国家免疫计划,而36个国家使用DHIS2进行Covid-19-19的监视现有能力:MOH已实施了DHIS2多年了; DHIS2专家的13个区域HISP集团可自定义的工具:DHIS2完全可自定义,使国家团队可以掌握其系统的所有权,并修改它们以满足当地需求和不断变化的需求。全球标准:HISP与谁和其他全球合作伙伴合作,以确保DHIS2工具包建立在全球标准上,以易于整合,分析和互操作性可持续性投资:向国家提供实施,培训和基础设施的资金,从而有助于长期目标,从而有助于加强卫生系统数字公共善良:DHIS2免费和开放式卫生系统。所有应用程序,移动应用,工具,培训材料,平台改进和创新都在全球共享,没有许可费
2.2. 价值................................................................................................................................................ 18
aabstr abtract Act ..在这项研究中,开发了一种数据驱动的深度学习模型,以快速准确预测温度演化和金属添加剂制造过程的熔融池尺寸。该研究的重点是通过直接能量沉积制造的M4高速钢材料粉末的批量实验。在非优化过程参数下,许多沉积层(以上30)通过由覆层材料对热史的高灵敏度引起的样品深度产生了巨大的微观结构变化。在先前的研究中通过实验测量验证的批量样本的2D有限元分析(FEA)能够实现定义在不同过程设置下温度场进化的数值数据。训练了馈送前向神经网络(FFNN)方法,以重现由FEA产生的温度场。因此,训练有素的FFNN用于预测初始数据集中未包含的新过程参数集的温度字段历史记录。除了输入能量,节点坐标和时间外,还认为五个相关的层数,激光位置以及从激光到采样点的距离可提高预测准确性。结果表明,FFNN可以很好地预测温度演化,在12秒内精度为99%。
在数据科学和机器学习的不断发展的景观中,时间序列建模的领域已成为一个重要且挑战性的研究领域。时间序列数据及其独特的时间依赖性和顺序模式,在金融,医疗保健和气候科学等各个领域中找到了应用[1,2,3]。时间序列的准确建模对于创建强大的模型和理解复杂系统至关重要。建模时间序列的一种方法是通过生成模型[4],该模型在异常检测[5]和数据增强[6]中具有实际应用。在本文中,我们提出了一种基于时间序列生成和建模的神经SDE的新颖方法。尤其是,我们旨在创建一个可以利用默顿模型[3]作为跳跃框架的模型,该模型可以考虑实际市场的跳跃。归一化流是具有易生化密度估计的生成模型家族。主要思想是通过组成几个函数f i将初始复杂的数据分散分散转换为一个简单的想法。有一些
此无绳螺丝刀是维修期间拆除和重新组装电子设备的理想工具。电池供电的驾驶员组包括一个精密电动螺丝刀(包括2 x AAA电池),20个微钻头和一个磁盘/磁磁化器,该磁力器/磁磁化器容纳在耐用的软袋中。已专门选择了与大多数主要品牌的智能手机,平板电脑和笔记本电脑,包括但不限于苹果iPhone,iPad,MacBooks,Samsung Galaxy,HP和Acer Chromebooks,Lenovo ThinkPads。
嵌合抗原受体 (CAR) T 细胞疗法在过去十年中已被证明是癌症治疗的突破,在对抗血液系统恶性肿瘤方面取得了前所未有的成果。所有获批的 CAR T 细胞产品以及许多正在临床试验中评估的产品都是使用病毒载体生成的,以将外源遗传物质部署到 T 细胞中。病毒载体在基因传递方面具有悠久的临床历史,因此经过了反复优化以提高其效率和安全性。尽管如此,它们半随机整合到宿主基因组中的能力使它们有可能通过插入诱变和关键细胞基因失调而致癌。CAR T 细胞给药后的继发性癌症似乎是一种罕见的不良事件。然而,过去几年记录的几起案例使人们关注到这个问题,鉴于 CAR-T 细胞疗法的部署相对较晚,这个问题迄今为止可能被低估了。此外,在血液系统恶性肿瘤中获得的初步成功尚未在实体瘤中复制。现在很明显,需要进一步增强以使 CAR-T 细胞增加长期持久性,克服疲惫并应对免疫抑制肿瘤微环境。为此,各种基因组工程策略正在评估中,大多数依赖于 CRISPR/Cas9 或其他基因编辑技术。这些方法可能会在产品细胞中引入意外的、不可逆的基因组改变。在本综述的第一部分,我们将讨论用于生成 CAR T 细胞的病毒和非病毒方法,而在第二部分,我们将重点介绍基因编辑和非基因编辑 T 细胞工程,特别关注其优势、局限性和安全性。最后,我们将严格分析不同的基因部署和基因组工程组合,为生产下一代 CAR T 细胞制定具有卓越安全性的策略。
摘要我们提出了一种新的多模式面部图像生成方法,该方法将文本提示和视觉输入(例如语义掩码或涂鸦图)转换为照片真实的面部图像。为此,我们通过使用DM中的多模式特征在预训练的GAN的潜在空间中使用多模式特征来结合一般的对抗网络(GAN)和扩散模型(DMS)的优势。我们提供了一个简单的映射和一个样式调制网络,可将两个模型链接起来,并在特征地图和注意力图中将有意义的表示形式转换为潜在代码。使用gan inversion,估计的潜在代码可用于生成2D或3D感知的面部图像。我们进一步提出了一种多步训练策略,该策略将文本和结构代表反映到生成的图像中。我们提出的网络生成了现实的2D,多视图和风格化的面部图像,这些图像与输入很好。我们通过使用预训练的2D和3D GAN来验证我们的方法,我们的结果表现优于现有方法。我们的项目页面可在https://github.com/1211SH/diffusion-driven_gan-inversion/。
图3。(a)MCF7_ESR1 WT,MCF7_ESR1 Y537S和MCF7_ESR1 D538G细胞用9浓度的palbociclib±雌激素剥夺(E2-)或1 nm fulvesterant处理。治疗6天后,通过曲面测定法测量细胞活力。(b)MCF7_ESR1 WT的肿瘤生长(n = 12),MCF7_ESR1 Y537S(n = 8)或MCF7_ESR1 D538G(N = 8)异种移植物在卵巢肌切除术中。小鼠用车辆或50mg/kg Palbociclib P.O.持续4周。(c)在(b)中描述的肿瘤处理结束时肿瘤体积的折叠变化的比较。(d)(b)中肿瘤的IHC染色定量。数据代表平均值±SD;使用Dunnett的事后测试使用单向方差分析进行统计分析。