“评估板和参考板”是指嵌入在印刷电路板(PCB)中的产品,用于演示和/或评估目的,其中包括但不限于演示,参考和评估板,套件和设计(集体称为“参考板”)。环境条件。仅如本文档所述,Infineon Technologies对评估板和参考板的设计进行了测试。在整个工作温度范围或寿命中,设计在安全要求,制造和操作方面没有资格。Infineon Technologies提供的评估板和参考板仅在典型的负载条件下进行功能测试。评估委员会和参考委员会与有关返回材料分析(RMA),过程更改通知(PCN)和产品停用(PD)的常规产品的程序不受相同的程序。评估委员会和参考委员会不是商业化产品,仅旨在评估和测试目的。尤其不得用于可靠性测试或生产。因此,评估委员会和参考委员会可能不符合CE或类似标准(包括但不限于EMC指令2004/EC/108和《 EMC法》),并且不得满足客户经营的国家/地区的其他要求。客户应确保所有评估委员会和参考委员会都将以符合其经营国家的相关要求和标准的方式处理。评估委员会和参考委员会以及本文档中提供的信息仅针对合格且熟练的技术人员,用于实验室使用,并且应根据本文档中规定的条款和条件以及在相应评估委员会或参考委员会提供的其他相关文档中使用和管理。是客户技术部门的责任评估预期申请评估委员会和参考委员会的适用性,并评估本文档中有关该应用程序中提供的信息的完整性和正确性。客户有义务确保使用评估委员会和参考委员会不会对人员或第三方财产造成任何伤害。评估委员会和参考委员会以及本文档中的任何信息都按“原样”提供,而Infineon Technologies不符合任何明示或暗示的担保,包括但不限于对第三方权利的不侵权和任何目的的含义保证,或为任何目的而言。Infineon Technologies 对于使用评估委员会和参考委员会和/或本文档中提供的任何信息造成的任何损害概不负责。 客户有义务捍卫,赔偿和持有因其任何用途而造成或造成的任何索赔或损害的损害和损害的Infineon技术。对于使用评估委员会和参考委员会和/或本文档中提供的任何信息造成的任何损害概不负责。客户有义务捍卫,赔偿和持有因其任何用途而造成或造成的任何索赔或损害的损害和损害的Infineon技术。Infineon Technologies保留在随时随地修改本文档和/或本文提供的任何信息的权利,恕不另行通知。
摘要:组织培养物,尤其是脑器官的分析,进行了高度的协调,测量和监测。我们已经开发了一个自动化的研究平台,使独立设备能够实现以反馈驱动的细胞培养研究实现协作目标。由物联网(IoT)体系结构统一,我们的方法可以在各种感应和驱动设备之间进行连续的,交流的互动,从而实现了对体外生物学实验的准时控制。该框架整合了微流体,电生理学和成像装置,以维持脑皮质器官并监测其神经元活性。类器官是用定制的3D打印室进行培养的,该腔室附着在商业微电极阵列上,用于电生理监测。使用可编程的微流体泵实现周期性喂养。我们开发了抽吸培养基的计算机视觉量估计,达到了高精度,并使用了反馈,以纠正媒体喂养/抽吸周期中微流体灌注的偏差。我们通过比较手动和自动化方案的7天研究对系统进行了为期7天的研究。自动化的实验样品在整个实验过程中保持了强大的神经活性,与对照样品相当。自动化系统启用了每小时的电生理记录,该记录揭示了在每天一次的录音中未观察到神经元发射率的巨大时间变化。
Bio Raj N. Singh博士是摄政教授兼国家工程学院(NAE)的成员。他曾担任材料科学与工程学院的创始局长,威廉姆斯公司杰出主席教授,俄克拉荷马州立大学(OSU)的能源技术主任。他收到了SC.D.马萨诸塞州材料科学与工程技术学院的学位。他在2012年加入OSU之前曾在Argonne国家实验室,GE-R&D中心和辛辛那提大学工作。Dr. Singh has been recognized for his engineering leadership through his scholarly activities (260 journal articles, 95 referred proceeding/reports, and 282 oral/invited presentations), pioneering inventions of MI composite processing technology leading to commercialization (28 granted patents), for graduating 36 students with MS and PhD degrees and through numerous professional awards in recognition of his engineering leadership such as Member of National Academy of Engineering (NAE), National美国陶瓷学会的Rishi Raj创新与商业化奖章,ASM国际Albert Sauveur成就奖,ASM International,Regents教授(OSU),AAAS AAAS,ASM International院士,美国陶瓷学会会员,美国陶瓷学院会员,惠特尼(UC)研究员(UC),惠特尼·盖里(Whitney Gee-cr),ASM国际院士,惠特尼·加里(Geie-Ge-Cr);专利奖GE-CR&D:青铜,银和金申请奖章。他还担任5个国际期刊的编辑委员会成员。
我们的研究表明,许多受访者认为他们在人工智能领域的进展比实际成熟度水平所反映的要快。这种脱节源于他们处于实施的早期阶段,初期的收益掩盖了人工智能在整个行业更广泛的变革潜力。为了帮助保险公司准确评估其在人工智能发展周期中的位置并有效地确定各项举措的优先顺序,我们引入了人工智能价值框架的三个阶段:赋能员工、将人工智能融入工作以及发展企业,以帮助保险公司从基础能力转向企业级转型和生态系统创新。通过逐步解决这些障碍,保险公司可以释放人工智能的变革潜力,同时降低风险。该框架有助于确保人工智能成为长期增长、竞争力和韧性的可持续战略性推动力。
高水平的炎性细胞因子诱导神经毒性并催化浮力驱动的神经变性,但是来自小胶质细胞的特定释放机制仍然难以捉摸。在这里,我们表明分泌自噬(SA)是囊泡货物分泌自噬的非悠久模态,可通过SKA2和FKBP5信号来调节神经蛋白 - 流量介导的神经变性。SKA2通过抵消FKBP5功能来抑制SA依赖性IL-1β释放。海马SKA2在雄性小鼠中敲低过度激活SA,从而导致神经蛋白肿瘤,随后的神经变性和六周内完全的河马萎缩。SA的过度激活增加了IL-1β的释放,导致了炎症前喂养的恶性循环,包括NLRP3插入式浮膜激活和Gasdermin d介导的神经毒性,最终导致神经变性。是由男性和雌性人类大脑的蛋白质表达和共免疫沉淀分析的结果表明,SA在阿尔茨海默氏病中被过度激活。总体而言,我们的发现表明,SKA2调节的,多动的SA促进了神经蛋白 - 浮动,并与阿尔茨海默氏病有关,从而提供了对神经素浮肿生物学的机械洞察力。
Paradromics开发了世界上最先进的BCI平台,该平台设计为寿命和实时数据处理。范式BCI隐藏在皮肤下,无缝弥合大脑和数字设备之间的缝隙。使用人工智能(AI),BCI BCI将记录的大脑信号转化为可操作的健康数据。
摘要 - 这项研究提出了一种创新的方法,可用于由四个可压缩肌腱驱动的软执行器启用的软四倍机器人的最佳步态控制。柔软的四足机器人与刚性的机器人相比,已广泛认可,可提供增强的安全性,较低的重量以及更简单的制造和控制机制。然而,它们的高度变形结构引入了非线性动力学,使得精确的步态运动控制复合物。为了解决这一问题,我们提出了一种基于模型的新型增强学习(MBRL)方法。该研究采用多阶段方法,包括国家空间限制,数据驱动的替代模型培训和MBRL开发。与基准方法相比,所提出的方法显着提高了步态控制策略的效率和性能。开发的策略既适合机器人的形态,既适合又有能力。这项研究结论是在实际情况下强调这些发现的实际适用性。索引术语 - 四倍的机器人,软执行器,增强学习,步态控制
除了加深对细胞代谢的理解外,这些发现为潜在的治疗应用铺平了道路。通过特定药物或化合物调节自噬可能对治疗肥胖症和2型糖尿病等代谢疾病的治疗有影响,这与脂质和蛋白质产生和降解的失衡有关。此外,提高自噬功能具有通过保持细胞器质量并防止肌肉减少症和其他与年龄相关的疾病来减慢细胞衰老的潜力。
摘要 - 电动机是电子推进系统的核心组成部分之一,在该行业中起着至关重要的作用。电动机的最佳设计提出了一个复杂的非线性问题,通常会挑战传统方法,以在准确性和效率之间取得平衡。实现准确的分析和整体优化通常需要大量的计算要求,尤其是在与大型个人打交道时。结果,研究人员开始探索数据驱动的替代模型来解决这一困境的利用。本评论论文着重于研究用于构建数据驱动的替代模型的领先技术,以协助和促进电动机的设计优化过程。这些技术包括统计模型,机器学习模型,深度学习模型和其他基于人工智能的技术。本文对基本原则进行了全面的调查,并提供了利用这些不同模型的研究的详细示例。此外,这些模型的性能和潜力都以评论为强调,从而阐明了它们各自的优势和局限性。此外,讨论了在此主题下提出的研究挑战,并有望在此主题下进行改进的途径。索引术语 - 手工智能,数据驱动的模型,深度学习,电动机,机器学习,优化,替代模型。
对于眼科,对于传统的基于被动扩散的药物干预,仍然存在许多不确定性和挑战。主要障碍之一是由复杂的玻璃体体和内部生物学大分子引起的有限渗透。在这里,我们第一次证明了新型TiO 2 @N-AU纳米线(NW)电动机/机车机器人由无线自然可见光诱导的动作可以自主,有效地通过光电粒的机制自动渗透到玻璃体体内。具有效率的推进,以及与玻璃体网络的空隙相匹配的NW电动机的纳米级尺寸,无创深入玻璃体体,并克服非均匀的非牛顿液(剪切薄和粘弹性)。我们设想了主动可见的轻型TIO 2 @N-AU NW电动机可容纳深眼病和无线生物电子药物的巨大应用前景。©2022 Elsevier Ltd.保留所有权利。