sumary日益增长的地震网络和越来越多的永久性地震站可以帮助改善地震危害评估的物理基础。为此,参考站点条件的定义非常重要。如果已知参考地面运动的可靠估计,则可以根据该参考位点对任何给定位点进行修改。由于选择良好的参考位点的选择并不简单,这主要是由于浅层层的较高可变性,因此这种选择被证明会受到大型不确定性的影响。虽然最上层30 m(v s 30)的平均s波速度之类的代理参数可能有助于表征参考站点条件,但此类参数既不可用,也不允许结论一下该站点不受放大和减弱效应的影响。在这项研究中,我们以统一和完全数据驱动的方式确定欧洲的前瞻性参考地点。所有分析均基于免费可用的地质和地球物理数据,不需要现场测量或特定地点代理。研究既说明了扩增的影响,又是较大频率范围内的衰减。为了解决关键概念问题,我们基于机器学习技术验证了我们的分类,其中研究了单个站点表征参数的影响。我们的研究表明,在2000多个研究中,欧洲大约250个地点不受当地现场效应的影响,并且可以根据所应用的标准将事实视为参考地点。
I. Ben Ali,M。Turki,J。Belhadj,Xavier Roboam。 独立无电池的PV/Wind驱动的咸水反渗透淡化系统的全身设计和能量管理。 可持续的能源技术和评估,2020,42,pp.100884。 10.1016/j.seta.2020.100884。 hal-02981480I. Ben Ali,M。Turki,J。Belhadj,Xavier Roboam。独立无电池的PV/Wind驱动的咸水反渗透淡化系统的全身设计和能量管理。可持续的能源技术和评估,2020,42,pp.100884。10.1016/j.seta.2020.100884。hal-02981480
抽象的多机器人系统越来越多地部署,以提供服务并完成其复杂性或成本太高的任务,无法单独实现单个机器人。尽管多机器人系统通过冗余提供了可靠性,并使执行更具挑战性的任务,但工程这些系统非常复杂。这种复杂性不仅影响机器人团队的建筑建模,而且会影响协作情报的建模和分析,从而使团队能够完成其任务。进行多机器人应用程序开发的现有方法没有提供捕获这些方面并评估多机器人系统鲁棒性的系统机制。我们通过引入Atlas来解决这一差距,Atlas是一种新型的模型驱动方法,支持模拟中多机器人系统的系统设计空间探索和鲁棒性分析。特定于Atlas领域的语言使建模机器人团队的架构及其使命的建筑,并促进了团队智能的规范。我们在三个模拟案例研究中评估了地图集并证明了其有效性:基于医疗的海龟任务和两个使用凉亭/ROS和MOOS-IVP机器人平台开发的无人管理的水下车辆任务。
多功能材料已被确定为开发低功耗技术的关键组成部分。在这方面,过渡金属氧化物已成为理论和实验研究的新焦点,因为它们具有可调的铁电性、磁性、巨磁电阻、多铁性和超导性,这些特性源于结构、电子和磁相关性的微妙相互作用 [1, 2]。如果异质结构中的至少一种组成化合物是过渡金属氧化物钙钛矿,也可以赋予其新功能。[3–6] 在宽带隙绝缘体 LaAlO 3 和 SrTiO 3 (STO) 的界面附近证实了二维金属态 (2DES),它还具有超导性 [7–9] 和大范围可调的 Rashba 自旋轨道耦合 [10],为自旋电子学创造了良好的机会 [11, 12]。此外,对几种ATiO 3 钙钛矿(A=Sr、Ba、Ca)和KTaO 3 的裸露或封盖表面的ARPES测量发现了受限的2DES[13–15];对于STO,提出了磁性迹象,并做出了拓扑状态的理论预测[16–18]。对于先验非极性材料,例如STO和CaTiO 3 (CTO),实验证据表明位于表面附近的氧空位提供了形成金属态的导带载流子[19–22]。块体CTO是绝缘体,带隙为3.5 eV[23]。低于1300 K,氧八面体的大角度旋转和倾斜迫使CTO变为正交结构[24],具有旋转角(φ=9°)和倾斜角(θ=12°)[25]。缺氧的 UHV 清洁 (001) 表面的 ARPES [21, 22] 光谱揭示了低于费米能级 EF 约 1.3 eV 的带内态和三个占据能带,构成 2DES。第一和第三个能带在布里渊区 (BZ) 中心 Γ 附近具有主导的 d xy 特征。第二个能带为
0的数据集持续时间用于培训和测试分裂的培训和测试分裂,并在以下方面受到其可用性的限制。1报告的数据集持续时间用于培训和测试分裂,来自该表和以下工作的培训持续时间受其可用性的限制。2作者已经处理了以下每个数据集,以提取语音和头部运动的特征,以训练拟议的模型,除了ding等人。[46]和Sadoughi和Busso [165]提供了视听数据和功能[20,158]。3不适用,W.R.T评估度量标准,在工作中不应用特定指标。4作者没有提供有关培训和测试数据大小的明确信息。5个数据集尺寸不可用。6 Greenwood等。 [77]没有使用任何客观或主观措施。 相反,他们讨论了有关地面真理的产生头部运动的特征。6 Greenwood等。[77]没有使用任何客观或主观措施。相反,他们讨论了有关地面真理的产生头部运动的特征。
对纯化学品,石油和药物等行业中聚合膜的需求强调了优化有机分离系统的需求。这涉及提高性能,寿命和成本效率,同时解决化学和机械不稳定性。这里开发了一个模型,该模型与膜性能相关联,该模型由物种I的渗透溶质浓度(CPI)指示,与在跨膜压力(δP)或压缩应力下渗透或渗透期间的实时压缩年轻的模量(E)。较低的CPI值表示性能更好。模型集成了溶剂密度(ρI),膜(δM)的溶解度参数,溶质(ΔSO),溶剂(δSV)以及膜约束的程度(ϕ)。还认为膜肿胀(LS)和压实(LC)具有相关的泊松比(γ),为预测膜性能提供了全面的框架。关键特征是无量纲参数β,定义为LN(LS/LC),它描述了不同的操作方案(β<1,β= 1,β> 1)。此参数将膜的属性特性与机械性能联系起来。使用三个有机分离系统(a,b和c)证明了该模型的能力,该系统分别使用纳米过滤(NF)膜分别将异亮氨酸与DMF,甲醇和己烷溶液分别分离,低,中等和高E值。跨膜压力范围为0.069至5.52 MPa(10 - 800 psi),β<1。中度压实,导致中等的膜电阻和致密性,被证明是有益的。性能结果表明,系统B(中E)>系统A(低E)>系统C(高E)的趋势,与降低溶剂 - 溶质相互作用(ΔΔSOSV)和压实水平相关。CPI - β图显示了三个不同的斜率,对应于弹性变形,塑性变形和膜聚合物的致密化,从而引导
通过在线 UV-VIS 分析和 PAT 驱动的 UF/DF 系统克服 TFF 中的挑战 质量依赖型 TFF 系统带来的最常见挑战包括过程碎片化、测量结果不稳定以及人为失误的风险很高。解决这些挑战需要采用新颖的方法,并具备实时在线产品样品和测试、自动化仪表、分析检测、连续生物处理和验证服务等功能。两种现有的 Repligen 产品 — KrosFlo ® KR2i 系统和 CTech™ FlowVPX ® 系统 — 可以成功结合使用以实现这些目标并应对 TFF 系统的挑战。KrosFlo KR2i TFF 系统是一种自动化的实验室规模 TFF 系统,用于下游应用,而 CTech FlowVPX 系统是一种在线 UV-Vis 光谱仪,具有改变光程的独特能力。它们共同构成了“实时过程管理”(RPM™)系统,该系统通过浓度测量控制为UF/DF过程提供过程管理。
登革热具有显着的全球健康影响,在过去的50年中,发病率急剧增加,影响了100多个国家。缺乏特定治疗或广泛适用的疫苗强调了迫切需要创新策略。这种观点重新评估了当前的证据,该证据通过自然抗体(NABS),尤其是宿主的肠道微生物组(GM)引起的抗A -GAL抗体,支持对登革热病毒(DENV)的双重保护概念。这些抗A -GAL抗体具有双重目的。首先,他们可以直接识别DENV,因为已经观察到蚊子衍生的病毒颗粒携带-GAL,从而为人类感染提供了保障。其次,它们具有通过与载体的微生物组相互作用并触发感染 - 遭受恐怖分子的状态来妨碍病毒发育的潜力。一侧的人GM和NAB之间的复杂相互作用,另一侧的NAB和矢量微生物组提出了一种新型方法,使用NABS直接靶向DENV并同时破坏载体微生物组,以降低病原体的传播和载体的能力,从而阻止DENV传输周期。
信息或电磁发散。自1996年第一次出版关于时机攻击的首次出版物以来,这种称为侧道攻击的新一代攻击在很大程度上引起了研究界的关注[20]。攻击的可能性很多,鉴于在敏感计算过程中设备可以披露的各种信号:功耗[19,24],磁场[11],温度[5]甚至声音[1]。 读者被转介给[15],以进行有关侧通道攻击的广泛介绍。 本文重点介绍了一个特定类别的侧通道攻击:恰当的攻击。 这些攻击是基于从CPU缓存内存泄漏的定时信息。 的确,当目标算法使用SEN-SINDIVE信息时,它将秘密数据加载到缓存内存中。 可以利用间谍保护的攻击者间接检查缓存mem-yry的内容,可以推断出目标算法已操纵哪些数据。 Tsunoo等人首先引入了缓存攻击。 在[35]中打破DES。 后来,在流行的缓存攻击中,使用缓存信息来打破AES [3],以及RSA的RSA:Flush+Reload [38]。 在本文中,我们将使用后一种攻击的改进:冲洗+冲洗攻击[14],它更隐形,产生更多的结果。 更具体地,我们在本文中研究了对ECDSA的OpenSSL实现的缓存时间攻击,ECDSA是用于数字签名的椭圆曲线算法。 OpenSSL [27]是用于实现加密协议的开源工具包。攻击的可能性很多,鉴于在敏感计算过程中设备可以披露的各种信号:功耗[19,24],磁场[11],温度[5]甚至声音[1]。读者被转介给[15],以进行有关侧通道攻击的广泛介绍。本文重点介绍了一个特定类别的侧通道攻击:恰当的攻击。这些攻击是基于从CPU缓存内存泄漏的定时信息。的确,当目标算法使用SEN-SINDIVE信息时,它将秘密数据加载到缓存内存中。可以利用间谍保护的攻击者间接检查缓存mem-yry的内容,可以推断出目标算法已操纵哪些数据。缓存攻击。在[35]中打破DES。后来,在流行的缓存攻击中,使用缓存信息来打破AES [3],以及RSA的RSA:Flush+Reload [38]。在本文中,我们将使用后一种攻击的改进:冲洗+冲洗攻击[14],它更隐形,产生更多的结果。更具体地,我们在本文中研究了对ECDSA的OpenSSL实现的缓存时间攻击,ECDSA是用于数字签名的椭圆曲线算法。OpenSSL [27]是用于实现加密协议的开源工具包。使用C实现的功能库通常用于实现安全套接字层和传输层安全协议,还用于启用OpenPGP和其他加密标准。
管理请引用 Tabucchi D、Buganza T、Muzellec L、Ronteau S。平台驱动的创新:揭示研究和商业机会。Creat Innov Manag。2021;1-6。https://doi.org/10.1111/caim.12428 摘要越来越多的企业采用了平台商业模式。Airbnb、亚马逊、Facebook、谷歌、Salesforce 和 Uber 等平台公司是全球最有价值的公司之一,它们彻底改变了各自的行业。但什么是平台?有一个独特的定义吗?他们如何创新,他们在创新文献中的地位是什么?这篇社论文章探讨了这些问题。首先,它概述了平台的定义、它们的演变以及在当今经济中日益增长的相关性。然后,它介绍并阐述了本专题的六篇论文,这些论文位于平台和创新文献流的交汇处。在此过程中,提出了一个框架来阐述“平台驱动创新”这一新兴概念的背景。本文展示了平台在创新过程中扮演的不同角色,即简化者、催化剂或推动者。最后,本文提出了一些关于未来研究如何探索创新与平台之间交集的建议。关键词 双边平台;多边平台;数字平台;创新;商业模式创新