气候变化可以直接(例如,暴露于极端温度)和间接(例如,感染性疾病生态学的变化)以复杂的方式影响人类健康,并由生物学,生态和社会经济因素的多种多样而复杂。媒介传播疾病(VBD)的传播是高度复杂和多因素的,并且受到生物学,生态,社会经济,人口统计学和人类引起的多种多样的影响,包括气候,迁移,全球贸易和旅行,包括许多Others。尽管气候是几个驱动因素之一,但它被认为是影响VBD分布的主要环境因素。气候变化加剧了向量和病原体的风险和负担,并使它们的引入和分散到新区域[1]。解散载体(主要是蚊子和壁虱)依赖于外部热源来维持其温度在功能极限内。因此,气候条件是载体的生理,生态,发展和行为的主要决定因素,并且还影响病原体生命周期中的生物学过程[1,2]。当温度升高时,这些生物过程可能会加速。例如,在热浪期间,高温增加了女性蚊子的咬合率。由于疾病向人类传播发生在血液进食期间,因此较高的咬合率导致疾病的发病率更高[2]。疟疾和登革热仍然引起人们的关注,2019年全球每100,000人口为2022年的2.49亿疟疾病例[4]和740.4例登革热病例[5]。尽管气候变量与VBD传播之间的相互作用是复杂的,通常是非线性的,并且在不同的矢量/病原体组合之间变量,但有明确的证据支持气候变化与VBD传播之间的关联[3]。但是,近年来发生了大幅下降,这可能归因于经济发展和公共卫生干预的成功。在2000年至2019年之间,疟疾病例的发病率从全球范围内的81人减少到每1000人的风险,疟疾死亡人数减少了三分之一。增加了对双重成分杀虫剂处理的床网的使用,改善了诊断测试,并扩大了对基于青蒿素的联合疗法的机会,这导致了这种下降[4]。这些成就表明了减少传染病传播的能力,并突出了最终归因和量化临床变化的影响的困难,这是影响VBD传播的许多复杂因素之一。气候变化是VBD地理分布扩展的一个因素,因为较温暖的条件有助于在新地区建立向量。急切地,热带物种朝着两极扩散,并且由于温度升高而建立在更高海拔的情况下。因此,我们现在观察到疾病向量扩散到新的,包括非流行区域,由于栖息地的改善(较温暖)的适合性[6]。病原体可以通过旅行,贸易或移民分散到非流行区域,
驾驶助手通过预防事故和改善工人的福祉,为运输物流创新提供了机会。但是,与技术互动的相关过渡改变了工作任务的范围和驱动因素对工作场所的看法。在这种静脉中,驾驶助手并不总是被积极地观察和停用。使用一种定量研究方法,即在德国卡车司机之间进行在线调查(n = 142),通过PLS-SEM和调解分析测试了基于技术接受模型和创新扩散理论的理论框架。因此,使用援助系统及其接受度主要是由社会规范,功能和可审动性驱动的。这项研究通过研究行为因素(例如认知偏见和社会偏好),影响和阻碍与援助系统的互动的行为因素,为行为运营管理论述做出了贡献。进一步提供了管理和政策建议,以改善运输物流中的工作设计和高级使用的相关激励措施。
通过制定共同优先事项以及协调区域层面的技术领域活动,中东欧各国可以实现共同目标。 旨在统一不同国家企业声音的伞状组织(例如中东欧数字联盟(中东欧数字和先进技术行业组织的非正式聚会))的存在对于代表他们在欧洲和全球层面的共同利益至关重要,而且在即将举行的欧洲议会选举中也是如此。 我们希望增加投资,以支持初创企业和中小企业的发展,同时也营造友好的商业环境,吸引全球公司在该地区投资。 此外,还敦促公共和私营部门加强合作,以更好地根据实际业务需求制定解决方案。 最后,创造平衡的监管环境对于确保中东欧地区的竞争力和数字经济的进一步发展至关重要。
fi g u r e 1微生物生态进化动力学对生态系统功能的影响。跨站点的社区由不同的操作分类单元(OTU)组成,这是微生物物种的替代物(此处为四个OTU为简单起见)。然而,OTUS掩盖了数百万年的进化差异,排除了对微生物种群或其他适应性反应的进化动力学的见解。当一个社区对环境变化做出反应时,生态(即种间变化)和进化反应(即种子内变化)转移分类(物种)和遗传(等位基因(等位基因)频率)。可以通过系统发育保护程度来评估功能性状(例如,碳降解和温度反应)的变化(例如碳降解和温度反应),以预测社区的整体功能响应。
肯尼亚成年人的 COVID-19 疫苗接种率较低(截至 2023 年 3 月底为 36.7%),疫苗犹豫对 COVID-19 疫苗接种计划构成威胁。本研究旨在研究肯尼亚 COVID-19 疫苗接种的促进因素和障碍。我们在肯尼亚两个特意选择的县进行了一项定性横断面研究。我们通过与 80 名社区成员进行 8 次焦点小组讨论和与医疗保健管理人员和提供者进行 8 次深入访谈来收集数据。使用框架方法分析数据,重点关注疫苗犹豫的决定因素及其对心理结构的影响。接种 COVID-19 疫苗的障碍与个人特征(男性、年龄较小、感知健康状况、对草药的信仰以及女性缺乏决策自主权——尤其是在农村地区)、环境影响(解除禁令、神话、对医疗的不信任、文化和宗教信仰)以及 COVID-19 疫苗相关因素(对未知后果的恐惧、副作用、对疫苗工作原理的缺乏了解以及加强剂的理由)有关。然而,社区卫生志愿者、值得信赖的领导者、授权、财务和地理可及性影响了 COVID-19 疫苗的接种。这些犹豫不决的驱动因素主要与心理结构有关,包括信心、自满和限制。肯尼亚的疫苗犹豫是由多个相互关联的因素驱动的。这些因素可能会为基于信任的循证有针对性的策略提供信息,以解决疫苗犹豫问题。这些策略可以包括性别敏感的免疫计划、适当的信息传递和一致的沟通,以消除恐惧、安全问题、误解和信息差距,并满足社区的关切。需要确保在当地环境中测试这些策略,并采用包括社区卫生志愿者、宗教领袖和社区领袖在内的多部门方法。
图1:澳大利亚季节性降雨区。中位年降雨量(基于1900年至1999年的100年期)和季节性降雨的发生(与5月至10月相比,11月至4月的降雨量比中位降雨的比率)用于识别六个主要区域;夏季主导(潮湿的夏季,干燥的冬季),夏季(潮湿的夏季,低冬季降雨),统一(无晴朗的季节性),冬季(潮湿的冬季,低夏降雨),冬季占主导地位(潮湿的冬季,干燥的夏季)和干旱(低降雨)。来源:气象局http://www.bom.gov.au/jsp/ncc/climate_averages/climate-classifications/index.jsp。2图2:1900年至2022年之间的新南威尔士州和澳大利亚首都地区的年降雨量。1961 - 1990年之间的平均降雨量为556.2mm。资料来源:气象局; http://www.bom.gov.au/climate/ 3图3:2000年至2019年之间的4月至10月的降雨十分位于1900年至2019年的整个降雨记录。注意最近的湿年(2020,2021,2022)不包括在内。来源:http://www.bom.gov.au/state-of-the-climate/。4图4:高分辨率(季节性 - 年分辨率)氢气候(降雨和/或温度)代理的位置。来源:Steiger等。24 5图5:在1000至2000 CE之间的每105年期间干燥,中性和潮湿年的比例。来源:Flack等。21 6图6:天气尺度天气的示意图和气候变化模式,对于新南威尔士州的降雨至关重要。来源:气象局。来源:https://takvera.blogspot.com/2014/01/warming-may-spike-when-pacific-decadal.html。8图8:过去2000年的IPO时间赛。a)扩展法律圆顶IPO重建和Buckley等。43 IPO重建,从1300年至2011年,b)过去2000年。 黑线是使用Folland索引的观察性IPO。 来源:Vance等人42 9图9:LaNiña和ElNiño事件期间的平均步行者循环模式,海面温度和降雨反应的示意图。 11图10:ENSO与澳大利亚降雨的关系。 每个季节的南部振荡指数与澳大利亚降雨量之间的相关性a)DJF-夏季,b)妈妈 - 秋天,c)jja -jja -winter,d)儿子 - 春天。 仅显示95%水平的相关性。 数据周期:1889年至2006年。 来源:Risbey等5。 12图11:在开始阶段的Niño4指数与中太平洋埃尔尼诺事件和东太平洋厄尔尼诺事件的成熟阶段之间的皮尔逊相关系数。 来源:Freund等人61 13图12:在IOD正期和负面事件期间,平均步行者循环模式,海面温度和降雨响应的示意图。 来源:气象局。 16图13:南环模式。 a)南半球的年平均地面风,显示了极地伊斯特利,南极北部南大洋的中纬度西风腰带以及沿澳大利亚东部海岸线的东南贸易风。 使用ERE5 87重新分析表面风(10m)创建的数字。 来源:Hendon等。43 IPO重建,从1300年至2011年,b)过去2000年。黑线是使用Folland索引的观察性IPO。来源:Vance等人42 9图9:LaNiña和ElNiño事件期间的平均步行者循环模式,海面温度和降雨反应的示意图。11图10:ENSO与澳大利亚降雨的关系。每个季节的南部振荡指数与澳大利亚降雨量之间的相关性a)DJF-夏季,b)妈妈 - 秋天,c)jja -jja -winter,d)儿子 - 春天。仅显示95%水平的相关性。数据周期:1889年至2006年。来源:Risbey等5。12图11:在开始阶段的Niño4指数与中太平洋埃尔尼诺事件和东太平洋厄尔尼诺事件的成熟阶段之间的皮尔逊相关系数。来源:Freund等人61 13图12:在IOD正期和负面事件期间,平均步行者循环模式,海面温度和降雨响应的示意图。来源:气象局。16图13:南环模式。a)南半球的年平均地面风,显示了极地伊斯特利,南极北部南大洋的中纬度西风腰带以及沿澳大利亚东部海岸线的东南贸易风。使用ERE5 87重新分析表面风(10m)创建的数字。来源:Hendon等。赤道膨胀和中纬度西风带(由蓝色和红色箭头指示)的极点收缩的变异性以SAM为特征。b)季节性马歇尔山姆指数。来源:https://climatedataguide.ucar.edu/climate-data/marshall-southern-nular-annular-mode-mode-sam-index-station-17图14:SAM对澳大利亚每日降雨的影响。每个澳大利亚季节正面和负SAM(SAM+减去SAM-)之间的每日降雨(阴影)和850-HPA风(向量)差异。在每个面板的右上列出了SAM的正和负阶段的天数。仅在复合每日异常与95%水平的零差异显着不同的情况下提供阴影。89 18图15:使用Marshall指数,代表代表印度洋偶极子的ElniñoSouthern振荡和偶极模式指数(DMI)的Marshall指数,海洋Niño指数(ONICNIño指数(ONI))的季节平均指数。年对应于十二月。*注意MAM图是年 + 1(例如MAM 2009代表2010年3月至5月的时期)。改编自Udy等人。82 21图16:东海岸旋风子类型。左 - 旋风簇轨道。右 - 第75个百分点降雨。来源:Gray等。115 22
2型糖尿病(T2D)是一种异质性疾病,它通过不同的病理生理过程1,2和通常针对细胞3,4型特定的分子机制而发展。在这里,为了表征跨祖先群体对这些过程的遗传贡献,我们汇总了来自2,535,601个个体(39.7%不是欧洲血统)的全基因组关联研究数据,包括428,452例T2D病例。我们识别出1,289个独立的关联信号,该信号在全基因组显着性(p <5×10 -8)上,映射到611个基因座,据我们所知,其中145个基因座先前未报告。我们定义了T2D信号的八个非重叠簇,其特征是心脏代谢性状关联的不同曲线。这些簇在开放染色质的细胞类型特异性区域差异富集,包括胰岛,脂肪细胞,内皮细胞和肠内分泌细胞。我们在另外279,552个不同血统的个体中,包括30,288例T2D病例,并在另外279,552个个体中建立了特定于集群的多基因分数5,并测试了它们与T2D与T2D相关的血管结局的关联。特定于群集的多基因评分与跨祖先组的冠状动脉疾病,外周动脉疾病和终末期糖尿病性肾病有关,强调了与肥胖相关过程在血管癌症发展中的重要性。我们的发现表明,将多功能基因组研究数据与单细胞表观基因组学进行了整合,以解散驱动T2D发展和发展的病因异质性。这可能会提供一条优化全球访问遗传知情糖尿病护理的途径。
土壤微生物和酶通过促进土壤骨料形成和稳定性以及参与SOC循环和积累来在土壤有机碳(SOC)隔离中起关键作用。然而,土壤微生物和酶充当促进快速城市化过程中SOC动态变化的介体的影响尚不清楚。因此,本研究选择了中国南昌市(505 km 2)的建设区域,作为研究区域。采样调查,以区分不同的城市化水平。使用土壤微生物群落和酶活性分析了城市化过程中不同聚集体的动态变化的驱动因素。结果表明,随着城市化强度的增加,SOC含量和股票都显着下降(p <0.05)。在0.25–1 mM的聚集体中观察到最高的SOC股票和贡献率,它们受到城市化的显着影响(p <0.05)。此外,革兰氏阳性细菌(G+)和放线症的生物量以及低腹膜化区域中N-乙酰基葡萄糖氨基酶和酸性磷酸酶(AP)的活性显着高于高腹化区域(P <0.05)。soc与真菌,羊膜霉菌真菌,G+,革兰氏阴性菌,静脉肌动症,原生代,β-1,4-葡萄糖苷酶,N-乙酰基果糖酰胺酶,AP,catalase和Catalase和Catalase和Catalase。与土壤酶相比,土壤微生物在SOC固结中表现出更大的作用(22.7%)。 这些与土壤酶相比,土壤微生物在SOC固结中表现出更大的作用(22.7%)。这些此外,结构方程模型表明,城市化可以直接或间接导致骨料SOC的降低,从而改变土壤的物理化学特性并影响微生物和酶动力学。但是,较大的植被特征索引减轻了城市化对SOC的负面影响。总体而言,城市化对土壤碳储存产生了负面影响。将来,重要的是考虑着专注于改善土壤养分,维持土壤结构,保护现有城市树木并增强植物多样性的策略。
目的:评估有效性的差异并确定与驱动基因阳性肺癌脑转移酶的靶向前和放射治疗优先治疗的结果预测因子。Materials and Methods: This retrospective study analyzed patients with driver gene-positive lung cancer brain metastases who received first-targeted and first-radiotherapy regimens, respectively, with SIB-WBRT (whole brain tissue 40 Gy/20 fractions, tumor tissue boosted to 56-60 Gy/20 fractions) and local irradiation (prescription dose range of 20-60 Gy/2-25分数最常见于2015年9月至2021年12月至2021年在北京联合医学院医院提供的30 Gy/5分数,床位为28-100.8 Gy)。主要终点是颅内前进生存期(IPF)。次要终点包括总生存期(OS),颅内新病变和肿瘤控制。Kaplan-Meier方法用于描绘和估计IPF,OS,颅内新病变和肿瘤控制。进行了COX回归分析,以评估相关因素和结果之间的关联。结果:完全完全招募了靶向前和放射治疗优先治疗的88例患者。在两组之间的IPF比较中没有发现差异(HR = 1.180,95%CI:0.622-2.237,p = 0.613)。在两组之间的OS比较中没有发现差异(HR = 1.208,95%CI:0.679-2.150,p = 0.520)。在两组之间颅内新病变的比较中没有发现差异(HR = 1.184,95%CI:0.569-2.463,p = 0.652)。两组之间的局部控制时间有所不同,放疗优先的方案是优越的(HR = 2.397,95%CI:1.453-3.954,p <0.001)。Patient age (HR=1.054, 95%CI: 1.026- 1.082, P <0.001), radiotherapy modality (HR=0.128, 95%CI: 0.041-0.401, P <0.001), metastasis volume (HR=1.426, 95%CI: 1.209-1.682, P <0.001), number of metastases(HR=14.960, 95%CI: 1.990-112.444, P =0.009), extracranial disease status (HR=0.387, 95%CI: 0.170-0.880, P =0.023) and therapy sequence (HR=13.800, 95%CI: 4.455-42.751, P <0.001) were associated with local 控制。结论:在患有脑转移的患者中,没有发现针对性优先的治疗方案相对于放射疗法优先方案,可以改善患者的IPF。与靶向优先方案相比,放疗优先的脑转移方案表现出优越的局部控制。 患者的年龄,放射疗法方式,转移体积,转移次数,颅外疾病状态和治疗序列可能与转移的局部控制有关。放疗优先的脑转移方案表现出优越的局部控制。患者的年龄,放射疗法方式,转移体积,转移次数,颅外疾病状态和治疗序列可能与转移的局部控制有关。
摘要。在BMWK [1]资助的项目Karli中,开发了用于Au tomed驾驶的HMI系统,以确保符合级别的驾驶员行为,以确定SAE水平为0-4 [2]。Karli的目标是开发一个新的整体系统,以确保由用户以用户为中心的迭代开发程序安全驾驶。设计思维方法用于开发思想和概念,以全面促进符合水平的驾驶员行为。这些想法被阐述为概念(例如学习系统,游戏化,信任校准),并以用户叙事的形式以低保真原型的形式进行。这些是基于文本的方案,其中使用户有形这些概念。定性研究的目的是评估旨在在接受和进一步发展的潜力方面促进级别驱动器行为而开发的概念。用户叙述中的概念在用户研究中进行了评估。进行了十二个指导的个人访谈(M = 74分钟)。样本合作有不同需求的人群。分析基于定性内容分析[3]。结果表明,除其他外,偏好是混合的偏好。根据结果,建议使用游戏化/经典干预或信任校准/经典干预和紧急停止的学习系统组合系统。本文提供了有关Karli研究项目用户中心方法的见解,并报告了定性评估研究的关键发现。基于关键发现,将提供以用户为中心的开发的建议和前景。