破坏性误解的后半部分涉及我们的能量系统。政治家,政策制定者,专家和媒体无休止地谈论太阳能,风能和电池如何改变我们的整个能源系统并解决气候危机。现实情况是,这些受政治上偏爱的技术没有,不会,也不能代替大多数能源服务和原材料。今天,它们几乎可以在电力部门进行部署,该电力部门仅占总能源消耗的20%。制造业是全球能源的最大用户,主要是以过程加热的形式,无法通过电子有效地提供。此外,为航空,全球运输,长途卡车运输和移动采矿设备等造成的超高功率密度没有可行的替代品。碳氢化合物的关键材料提供氮肥,该氮肥料全球粮食生产的一半。此外,Hy-drocarbons提供关键的材料,以生产塑料和石化,这是现代生活的重要组成部分。他们还提供沥青,油漆,润滑剂,化妆品,60%的全球服装纤维以及数千种Other产品。没有碳氢化合物,我们将
a 汕头大学生物系,广东汕头 515063,中国 b 汕头大学广东省海洋生物技术重点实验室,广东汕头 515063,中国 c 悉尼科技大学土木与环境工程学院,百老汇,新南威尔士州,2007,澳大利亚 关键词:CRISPR-Cas;生物燃料;代谢通量;基因调控;脱靶效应 摘要 随着合成生物学和代谢工程领域的快速发展,有可能应用以最大化产量和生产率来生成各种先进的生物燃料,以实现更可持续的生物过程并减少碳足迹。在众多的分子生物学工具中,成簇的规律间隔短回文重复序列-CRISPR 相关蛋白 (CRISPR-Cas) 技术脱颖而出,具有潜在的靶向基因组编辑能力,与锌指核酸酶 (ZFN) 和转录激活因子样效应核酸酶 (TALEN) 等前辈相比,其基因敲除和敲入系统更精确、更准确。有报道涉及用于生物燃料生产的先进微生物基因组工程工具;然而,缺乏关于基于 CRISPR-Cas 的技术在改进生物燃料生产中的全面综述,以及减少脱靶效应以确保该方法成功和安全的策略。因此,在这篇综述中,我们试图系统地评论 CRISPR-Cas 的机制及其在微生物生物燃料生产中的应用。这包括生物乙醇、生物丁醇以及其他碳氢化合物,它们依次遵循各种建议来提高靶向基因的效率。本文还讨论了可诱导的开/关基因回路在响应环境刺激时在靶向基因组编辑 (TGE) 调节中的作用,即通过最小化代谢负担和最大化发酵效率。本文考虑了相关的严格监管要求,以确保最小的脱靶切割和最大的效率,以及该技术的完全生物安全性。可以得出结论,CRISPR-Cas 技术的最新发展应该为创建微生物生物炼油厂开辟一条新途径,从而有可能提高生物燃料的生产。