电信行业的服务质量在该国的增长和经济中起着至关重要的作用。在印度,几家电信运营商提供服务,并且有一个被称为印度电信监管机构(TRAI)的监管机构。在电信域中,呼叫下降是一个问题,它在渲染服务中降低了电信行业的性能。这也会给用户带来不便和浪费时间,并降低了用户满意度的水平。需要在人工智能(AI)的帮助下进行以技术为导向的分析,以分析呼叫动态以做出明智的决策。现有的研究表明,机器学习(ML)有助于分析呼叫下降动态。但是,需要使用机器学习技术和优化的框架来提高分析电信行业的呼叫下降动态的性能。在本文中,我们提出了一个ML框架,以自动分析所有运营商电信行业的所有跌落。该框架还支持优化,例如未来的工程和降低维度,以提高机器学习模型的性能。我们提出了一种称为基于学习的呼叫分析(LBCDA)的算法,该算法利用特征选择和培训多个分类器来呼叫Drop Analytics。使用电信行业的基准数据集变体,我们的实证研究表明,我们的框架的随机森林(RF)模型的表现优于87.40%的其他模型。
大学,德拉敦 - 248007,北阿坎德邦,印度 2 比萨大学航空航天工程系,比萨,意大利 摘要 本文展示了通过种植新鲜蔬菜并在模拟生长条件下生产它们来支持人类在太空中生活的可能性。向空间站和载人航天任务供应新鲜蔬菜非常复杂,而且成本高昂。在太空中种植植物可能很困难,因为太空中没有重力,没有土壤、肥料等。水培是一种不使用自然资源(即土壤、空气、天然肥料等)来种植植物的先进技术。它与温室相结合,技术先进,集约化程度高。水培技术在封闭室内进行,使用蒸气压差 (vpd) 控制器、营养流和水流控制器来控制空气、温度和湿度。一个主要问题是微重力,它导致根的生长方式与土耕不同。在微重力和低重力条件下,太空农业采用各种方法,如水培、气培等。本文重点介绍水培设计、结构、操作、技术、适合植物的基质、pH 值、水位以及水培技术所需的控制器。本文的主要目标是建立一个完全自动化、坚固且万无一失的初步设计,并找到解决由于重力和真空条件引起的基质和多光谱照明问题的最终解决方案。全自动系统有助于减少劳动力并为宇航员提供健康的食物。关键词:水培、太空农业、宇航员、植物、营养素、蒸汽压不足控制器 I. 简介由于太空任务补给的成本效益高,在太空种植蔬菜具有巨大的潜力。太空农场的存在将有助于创造自然环境,因为植物可用于循环废水、产生氧气并持续净化空气。除了航天器中占很大一部分重量的宇航员,他们还必须携带罐装太空食品,而这些食品在宇航员的饮食中营养和维生素含量很低。通过太空农业,可以在太空中生产出味道和质量更好的新鲜蔬菜,并减少宇航员饮食中的维生素缺乏症。通过将宇宙飞船改造成具有水文循环和养分循环的人工生态系统,太空农业可以成为现实。能否定期为机组人员提供氧气、水和食物,同时几乎不需要从地球进行补给,将决定太空是否可以殖民。地球上种植植物作物是为了支持这些任务,因此建立以植物为基础的食品生产系统对于维持
这些材料在激光中被广泛应用,包括作为激光器中的活性介质[3-5]、作为量子信息技术的纯单光子和纠缠光子对源[6]、以及作为新型纳米存储器件的构建块。[7-9] 特别是 InAs/InP 量子点,由于其与 1.55 μ m 的低损耗电信 C 波段兼容,目前作为单光子发射器非常有吸引力。[10,11] 金属有机气相外延 (MOVPE) 中的液滴外延 (DE) 是一种新近且非常有前途的 QD 制造方法,因为它结合了大规模外延技术和多功能外延方法。[12-15] 这是一种相对较新的工艺,其生长动力学尚未完全了解,特别是对于与电信波长兼容的 III-V 材料系统,例如 InAs/InP。因此,它在制造用于广泛应用的电信 QD 方面具有巨大的发展潜力。此外,使用 InP 作为基质材料可以实现 InAs 量子发射体的生长,而无需任何额外的变质缓冲剂(例如 AlInAs/GaAs)。[16 – 18]
多能干细胞 (PSC) 的分化及其向类器官的自组织受到细胞间相互作用的影响,这些相互作用由接触和分泌分子介导。由于限制和小的培养体积,这些相互作用在微流体液滴中得到增强。然而,尚未对液滴内 PSC 的培养及其微环境的影响进行全面研究。在本研究中,我们提出了一个液滴平台,用于在细胞定型的各个阶段对 PSC 进行 3D 培养。我们展示了 PSC 分化为三个胚层以及在液滴内形成类器官的可行性。我们的研究结果表明,在密闭空间中培养 PSC 可以调节细胞命运决定,通过依次诱导不同分化细胞群的生长和迁移来促进类原肠胚中的组织模式形成,并促进心脏类器官的自组织。这种技术方法为体外调节组织自模式形成的内在因素提供了独特的见解。
半年度社会监测报告(外部) 报告期:2024 年 1 月 - 6 月 文件阶段:最终报告 提交给 PIU 和亚行:2024 年 10 月 巴基斯坦:巴拉科特水电开发项目 由开伯尔-普什图省政府普什图能源发展组织 (PEDO) 项目实施单位为亚洲开发银行编制。 本半年度社会监测报告(外部由 PEDO 的外部安置监测顾问编制)涵盖两个部门土地征用和安置计划 (LARP) 的实施情况。 本报告是借款人的文件。 本文表达的观点不一定代表亚行董事会、管理层或员工的观点,并且可能只是初步观点。请注意本网站的“使用条款”部分。亚洲开发银行在制定任何国家计划或战略、为任何项目提供融资或在本文件中指定或提及特定领土或地理区域时,并不打算对任何领土或地区的法律地位或其他地位作出任何判断。
主动生物技术AB(PUBL)(NASDAQ Stockholm:ACTI)是一家生物技术公司,为具有很高未满足医疗需求和巨大商业潜力的肿瘤学和免疫学指示开发第一类免疫调节治疗。Active Biotech当前在其投资组合中拥有三个项目,其中Tasquinimod和Laquinimod是全资具有小分子免疫调节剂,其作用方式包括调节髓样免疫细胞功能。这些项目分别用于血液学恶性肿瘤和炎症性眼部疾病的临床发展。该公司的核心重点是在骨髓纤维化(一种罕见的血液癌)中的发展,在骨髓癌中开始了临床概念验证研究。也在进行多发性骨髓瘤的临床IB/IIA研究。laquinimod正在临床发育中治疗非感染葡萄膜炎。具有局部眼科配方的临床I期计划正在进行中,以与合作伙伴一起支持II期的开发。第三个管道项目是Naptumomab,这是一种靶向抗癌免疫疗法,与NeoTX Therapeutics合作,该治疗疗法是晚期实体瘤患者的IB/II期临床计划。请访问www。
Karen 概述并更新了这项研究。她明确表示,这项研究没有推广或提出任何具体的 PSH 项目。Karen 随后概述了这项研究的下一步计划,包括未来的全州会议和部落论坛(请参阅本摘要末尾的时间表和日期详情)。未来的会议将重点关注各种主题,包括但不限于水生生态学、水质、陆地生态学、地质学、土地使用以及许可和执照。Karen 还介绍了低影响水文研究所 (LIHI) 的 Surabhi Karambelkar,他简要介绍了他们的工作,即定义什么是低影响的抽水蓄能项目。在 Karen 演讲结束时,一位参与者问道,为什么在还有其他选择的情况下,该州似乎专注于 PSH。Karen 澄清说,该州正在考虑许多清洁能源选择,这项研究是在响应州立法机构对 PSH 进行研究的指示(众议院第 1216 号法案第 306 节,2023 年)。
水力发电潜力 • 水头 - 进水口和涡轮机之间的高度距离(英尺) • 流量 - 水量(cfs) • 水力效率 - 主要由压力水管的大小和类型决定 • 涡轮机的机械效率 • 电机的电气效率