1欧洲果蝇种群基因组学财团(Droseu),2阿什沃思实验室,爱丁堡大学进化生物学研究所,夏洛特·奥尔巴赫路,爱丁堡·奥尔巴赫路,爱丁堡EH9,英国3fl,英国3Fl,3弗尼Ge´nomes,Comportement et e´cologie,91198 Gif-Sur-Yvette,法国,5个生物学系,乔治敦大学,华盛顿特区乔治敦大学,美国6号生物学系,隆德大学进化生态学部,So so。LVEGATAN37,SOULUND 223 62,SWEDEN,SWEDEN,SWEDEN,SWEDEN,SWEDEN,7级生物学。 Maximilians-Universita¨t Mu¨ nchen, Planegg, Germany, 8 Department of Cellular, Computational and Integrative Biology, CIBIO University of Trento, Via Sommarive 9, Trento 38123, Italy, 9 Department of Medicine & Endocrinology, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016, USA, 10 Institute of Integrative Biology, University of Liverpool,利物浦L69 7ZB,英国,11 UMR CNRS 6553 Ecobio,Ecobio,Uniestite de Rennes1,法国雷恩斯,法国,12个生物学研究所“ Sinisa Stankovic”研究所,塞尔比亚国立国家研究所,贝尔格莱德大学,贝尔格莱德大学,Bulevar Despota Stefana 142,Belgrade,Belgrade,Belgrade,serbii forgrade forgrade forgrade塞尔维亚贝尔格莱德(Belgrade),芬兰Jyvaâskyla的生物与环境科学系14号,乌克兰国家南极科学中心15
血脑屏障(BBB)代表循环系统与大脑之间的关键接口。在果蝇中,BBB由会阴和植物胶质神经胶质细胞组成。周围的神经胶质细胞是形成神经系统最外层并参与营养摄取的小丝分裂活性细胞。粘膜下神经胶质细胞会堵塞分隔连接,以防止大分子细胞细胞扩散到神经系统中。为了解决植物下神经胶质是否仅形成一个简单的屏障,还是与会阴神经胶质细胞和内心神经系统(CNS)细胞建立特定接触,我们进行了详细的形态分析。使用遗传编码的标记以及高分辨率激光扫描共聚焦显微镜和透射电子显微镜,我们确定了延伸到周围层层的细胞过程,并进入了CNS皮层。有趣的是,观察到长细胞过程到达中央大脑神经胶质的神经胶质。GFP重建实验强调了下灌木丛和振兴神经胶质之间的多个膜接触区域。此外,我们确定G蛋白偶联受体(GPCR)的喜怒无常为阴性细胞过程生长的负调节剂。失去喜怒无常的损失引发了大规模的植物下细胞过程中CNS皮层的过度生长,此外,还影响了异生物生物转运蛋白MDR65的两极化定位。最后,我们发现GPCR信号传导(而不是分隔连接形成)负责控制膜过度生长。我们的发现支持果蝇BBB能够通过长细胞过程弥合大脑循环和突触区域之间的通信差距的观念。
尽管理论上阐明了牙粒卫星DNA重复的快速演变以促进混合不兼容(HI)(Yunis和Yasmineh 1971; Henikoff等; Henikoff等。2001; Ferree and Barbash 2009; Sawamura 2012; Jagannathan和Yamashita 2017),如何影响杂种细胞的发散重复量仍然很少了解。 最近,我们证明了从多个染色体到“染色体”的序列特异性DNA结合蛋白簇DNA,从而将染色体捆绑在单个核中(Jagannathan等人。 2018,2019)。 在这里,我们表明,果蝇杂交细胞中发散卫星DNA的无效聚类导致铬成分破坏,相关的微核形成和组织萎缩。 我们进一步证明,先前鉴定的HI因子触发了杂种中心的染色体破坏和微核,将其功能与保守的细胞过程联系起来。 一起,我们提出了一个统一的框架,该框架解释了密切相关的物种之间广泛观察到的卫星DNA差异如何引起生殖分离。2001; Ferree and Barbash 2009; Sawamura 2012; Jagannathan和Yamashita 2017),如何影响杂种细胞的发散重复量仍然很少了解。最近,我们证明了从多个染色体到“染色体”的序列特异性DNA结合蛋白簇DNA,从而将染色体捆绑在单个核中(Jagannathan等人。2018,2019)。在这里,我们表明,果蝇杂交细胞中发散卫星DNA的无效聚类导致铬成分破坏,相关的微核形成和组织萎缩。我们进一步证明,先前鉴定的HI因子触发了杂种中心的染色体破坏和微核,将其功能与保守的细胞过程联系起来。一起,我们提出了一个统一的框架,该框架解释了密切相关的物种之间广泛观察到的卫星DNA差异如何引起生殖分离。
1 莱布尼茨神经生物学研究所,学习和记忆遗传学系,马格德堡,39118,德国,2 莱比锡大学生物研究所动物生理学系,莱比锡,04103,德国,3 莱比锡大学生物研究所遗传学系,莱比锡,04103,德国,4 魏茨曼科学研究所分子细胞生物学系,雷霍沃特,7610001,以色列,5 亚琛工业大学成像和计算机视觉研究所,亚琛,52074,德国,6 波多黎各大学医学科学园区神经生物学研究所,旧圣胡安,波多黎各,00901,7 剑桥大学生理学、发育和神经科学系,剑桥,CB2 3EL,英国,8 珍妮莉亚研究园区,霍华德休斯医学研究所,阿什本, 20147,弗吉尼亚州,9 莱布尼茨神经生物学研究所,组合神经影像核心设施,马格德堡,39118,德国,10 加利福尼亚大学,分子,细胞和发育生物学系,加利福尼亚州洛杉矶 90095-1606,11 巴黎萨克雷大学,国立科学研究中心,巴黎萨克雷神经科学研究所,萨克雷,91400,法国,12 行为脑科学中心,马格德堡,39106,德国,13 奥托冯格里克大学生物学研究所,马格德堡,39120,德国
(A) 顶部:将目标 Gal4(深蓝色,顶部构建体)与编码 Cas9 的版本 2 (V2) 供体菌株杂交,该菌株由 X 上的 vasa 启动子控制(未显示),而 CyO 上的供体构建体则包含 T2A。LexA 由 floxed 3xP3-RFP、黄色+ 盒标记,两侧是 Gal4 同源臂和 U6 驱动的向导 RNA(CyOHACKy.V2,y +、RFP +)。从上往下第三行:得到的 HACKed 染色体,其中 Gal4 ORF 已被破坏并由 T2A.LexA 替换,由视觉标记黄色+和 RFP+标记。底部:与 hs- Cre 杂交后,黄色 +、RFP + 盒被移除。
抽象动物可以连续学习不同的任务以适应不断变化的环境,因此具有有效应对任务间干扰的策略,包括主动干扰(Pro-I)和追溯干扰(Retro-I)。已知许多生物学机制有助于学习,记忆和忘记一项任务,但是,仅当学习顺序不同任务的理解相对较少时,才涉及的机制。在这里,我们在果蝇中两个连续的关联学习任务之间剖析了Pro-I和retro-I的分子机制。pro-i比retro-i对任务间隔(ITI)更敏感。它们在简短的ITI(<20分钟)中一起出现,而在ITI中只有Retro-I在20分钟以后保持显着。急性过表达的开瓶器(CSW),一种进化保守的蛋白酪氨酸磷酸酶SHP2,在蘑菇体(MB)神经元中降低了Pro-I,而CSW急性敲低CSW ADACERBATES PRO-I。进一步发现CSW的这种功能依赖于MB神经元的γ子集和下流RAF/MAPK途径。相比之下,操纵CSW不会影响复古I和单个学习任务。有趣的是,调节retro-i的分子对Rac1的操纵不会影响Pro-I。因此,我们的发现表明,学习不同的任务连续触发不同的分子机制来调节主动和追溯干扰。
睫状缺陷引起几种纤毛病,其中一些纤毛发作迟到,这表明cilia被积极维持。仍然,我们对维护的机制的理解很糟糕。在这里,我们显示了果蝇黑色素果ift88(DM IFT88/nompb)继续沿着完全形成的感觉纤毛移动。我们进一步识别无活跃的,果蝇听力和负性持续性行为的TRPV通道亚基,以及尚未表征的果蝇鸟叶尼犬环酶2D(DM GUCY2D/ CG34357)作为DM IFT88货物。我们还显示了DM IFT88与循环酶的细胞内部分的结合,该部分在几种退化性视网膜疾病中是进化保守和突变的,对于DM GUCY2D的纤毛定位而言是不可能的。最后,成年纤维中DM IFT88和DM GUCY2D的急性敲低导致纤毛功能的维持,障碍和刺激性刺激性的行为导致缺陷,但并未显着影响睫状超结构。我们得出的结论是,成人范围内听力的感觉睫状功能涉及DM IFT88及其至少两个信号传导跨膜货物,DM GuCy2D和无效的主动维护程序。
摘要:宿主的共同进化及其寄生虫具有效应血细胞类型的异质性,从而提供了具有可变有效性的免疫防御反应。在这项工作中,我们表征了果蝇威利斯托尼的血细胞,果蝇威利斯托尼是一种进化了具有广泛变化和高度可塑性的细胞免疫系统的物种。单克隆抗体并用于间接免疫荧光实验中,以表征血红素亚群,遵循其功能特征和分化。pagococytosis和寄生分析用于确定血细胞类型的功能特征。样品。我们确定了一种新的多核巨型血细胞(MGH)类型,该型在细胞免疫反应中对寄生虫的反应进行了区分。这些细胞通过核分裂和细胞融合在循环中分化,也可以源自中央造血器官淋巴腺。它们具有二元功能,因为它们通过吞噬作用吸收细菌,并参与了寄生虫的封装和消除。在这里,我们表明,在响应大型外国颗粒(例如寄生虫)中,MGHS具有区分,具有二元功能,并有助于高效的细胞免疫反应,类似于脊椎动物的异物巨细胞。
捕获人类疾病遗传复杂性并允许对基础细胞,组织和器官相互作用进行机械探索的实验模型对于使我们对疾病生物学的理解至关重要。这样的模型需要对多个基因的组合操作,通常是一次以上的组织。在体内进行复杂的遗传操作的能力是果蝇的关键优势,其中许多用于复杂和正交遗传扰动的工具。然而,在这些已经复杂的遗传背景中建立更多代表性疾病模型和进行机械研究所需的大量转基因是具有挑战性的。在这里,我们提出了一种设计,该设计通过允许靶向组合异位表达和来自单个诱导型转基因的多个基因敲低的靶向组合异位表达来推动果蝇遗传学的极限。由该转基因编码的多余体转录本包括一个合成的短发夹簇,它克隆在转录本的5'末端的内含子中,然后是两个蛋白质编码序列,该蛋白质编码序列由介导核糖体跳过的T2A序列分开。这项技术对于建模癌症等遗传复杂疾病特别有用,癌症通常涉及多发性肿瘤基因的同时激活和多PLE肿瘤抑制剂的丧失。此外,将多种遗传扰动巩固到single转基因中,进一步简化了执行组合遗传操作的能力,并使其很容易适应广泛的转基因系统。这种用于组合遗传扰动的灵活设计也将是一种有价值的工具,用于探索从人类疾病的OMICS研究中鉴定出的多基因基因特征并创建人源化的果蝇模型,以表征人类基因中与疾病相关的变体。它也可以适用于研究正常组织稳态和发展需要同时操纵许多基因的生物学过程。
睡眠和昼夜节律功能障碍是阿尔茨海默氏病(AD)的常见临床特征。越来越多的证据表明,除了症状外,睡眠障碍还可以推动神经退行性的进展。蛋白质聚集是AD的病理标志;然而,睡眠如何影响蛋白质的分子途径仍然难以捉摸。在这里,我们证明了睡眠调制影响蛋白质的蛋白质和神经退行性的果蝇模型中的神经退行性的进展。我们表明睡眠剥夺增强了TAU聚集毒性,导致突触变性加剧。相比之下,通过调节的自噬液和泛素化的tau的清除率增强了神经元的毒性tau降低,导致神经元的毒性tau缩减减少,这表明质量的蛋白质处理和清除率导致了证明的突触完整性和功能。这些发现突出了睡眠与蛋白质稳态调节之间的复杂关系与增强睡眠治疗剂的神经保护潜力,以减慢或延迟神经变性的发展。
