ef伏特转运蛋白在革兰氏阴性细菌中具有抗性。在这里,我们通过抑制其主要的RND转运蛋白Acrab-tolc来确定和化学优化基于吡idyl吡啶基吡嗪的共体,从而增强大肠杆菌的抗生素活性。抗性大肠杆菌突变体和结构生物学分析的表征表明,该化合物结合了Acrb l frotomer的跨膜结构域上的独特位点,由质子继电器涉及的关键催化残基衬里。分子动力学模拟表明,抑制剂通过AICRB L原始物中仅存在的通道从细胞质量中获取这种结合袋。因此,我们的工作揭示了一类变构EF液泵抑制剂,这些抑制剂可能通过防止RND泵的功能催化循环来起作用。
高风险的酒精和非法药物使用是疾病和住院并发症的危险因素。本研究调查了临床医生是否在急性住院内科患者的电子记录中记录药物使用情况。研究样本包括 2016 年 11 月至 2017 年 12 月期间在挪威奥斯陆一家内科医院接受治疗的 2,872 名患者,前瞻性地收集了药物使用数据,从而确定了酒精和非法药物阳性患者。医院工作人员不知道这些数据。对于研究证实的酒精使用量超过低风险指南(酒精使用障碍识别测试 4 评分 [AUDIT-4] 女性≥ 5,男性≥ 7)和/或非法药物使用(液相色谱-质谱 [LC-MS] 分析检测到一种或多种非法药物)的患者,检查了医生是否记录了定量的药物使用评估和干预措施。在 548 名经研究证实的酒精阳性患者中,医生记录了 43.2%(n = 237)患者的使用数量和频率 (QF),22.0%(n = 121)患者的干预措施。酒精干预与有害饮酒(AUDIT-4 ≥ 9 分;调整后的优势比 [AOR] = 4.87;95% CI:2.54 – 9.31;p < 0.001)和 QF 评估(AOR = 3.66;95% CI:1.13 – 11.84;p = 0.02)相关。在 157 名非法药物阳性患者中,34.4%(n = 54)定量描述了药物使用情况,26.0%(n = 40)描述了干预措施。医院医生对酒精和非法药物使用的定量评估率较低,因此干预率较低。错过了减少或干预酗酒和非法药物滥用风险的重要机会。
1 CEA,DES,IRESNE,核测量实验室,F-13108法国圣保罗 - 莱兹 - 杜兰斯2 ENEA,Lungotevere Grande Ammiraglio Thaon di Revel 76,Roma 000196,Roma 000196,意大利3 Caen S.P.A. Bagnols-Sur-Cèze30200,法国5 Orano集团,巴黎大街125号,Châtillon92320法国6 Orano La Hague,La Hague 50444,在Micado H2020项目的框架中,被动和主动的中子测量系统正在开发出核材料的核材料量不足的频率,并估算出了核材料的范围。已经进行了蒙特卡洛模拟,以设计一个新的模块化和可运输的中子系统,其主要目标是在被动模式下进行良好的表现,即中子重合计数,并在主动询问模式下与差分隔离技术。不同的设计,这些设计主要不同,它们的适量材料(石墨和聚乙烯)。这项参数研究使我们能够考虑到其在广泛的原地和核设施中的最终实施,从而定义了一个原型。原型的总中子检测效率为6.75%,如空鼓计算,即没有废物矩阵。基于核材料等效质量的检测极限,也基于对鼓内核材料的均匀分布的假设进行了估算,其中包含四种类型的矩阵,这些矩阵涵盖了项目框架中定义的核废料桶范围。最有利的矩阵是在被动模式下由不锈钢制成的,在活动模式下的聚乙烯,明显的密度分别为0.7 g.cm -3和0.1 g.cm -3。计算出的质量检测极限分别为240 PU的68毫克,62 mg的235 U和39 mg的239 PU。最严格的矩阵由聚乙烯制成,表观密度为0.7 g.cm -3,在被动模式下导致519 mg的质量检测极限为240 PU,564 mg的235 U或349 mg或349 mg的239 PU在活动模式下为239 PU。被动和主动模式的测量时间为30分钟。下一步将是基于密集的蒙特卡洛计算和实验设计的矩阵效应的完整研究,以找出适当的校正。还将在CADARACHE核测量实验室进行实验,并通过中子系统原型的构造和组装,以及装有不同矩阵的模拟鼓的测量。
françoisestanke-labesque,elodie gautier-vevenret,斯蒂芬妮·乔恩(Stephanie Chhun),罗曼·吉尔豪穆(Romain Guilhaumou)。燃料是药物代谢酶和转运蛋白的主要调节剂:药物治疗个性化的后果。药理学和治疗学,2020,215,pp.107627。10.1016/j.pharmthera.2020.107627。hal-03598618
后唑启动子富集于次级DNA结构形成基序中,例如G-四链体(G4S)。在这里,我们描述了“ G4Access”,这是一种通过核酸酶消化与开放染色质相关的分离和序列G4的方法。g4Access是抗体和交联的非依赖性和富集的计算预测G4S(PG4S),其中大多数在体外得到了证实。使用人和小鼠细胞中的G4ACCESS,我们鉴定出与核小体排除和启动子转录相关的细胞类型的G4富集。G4ACCESS允许测量G4配体处理后G4曲目使用的变化,HDAC和G4解旋酶抑制剂。将G4ACCESS应用于来自相互杂交小鼠交叉的细胞表明G4在控制活动印迹区域中的作用。一致地,我们还观察到G4ACCESS峰是未甲基化的,而PG4S的甲基化与DNA上的核小体重新定位相关。总体而言,我们的研究为研究细胞动力学的G4提供了一种新工具,并突出了它们与开放染色质,转录及其对DNA甲基化的拮抗作用的关联。
人类癌细胞系的药物敏感性预测模型构成了在临床前环境中识别潜在反应性因素的重要工具。整合从一系列异质数据中得出的信息至关重要,但仍然是不平凡的,因为数据结构的差异可能会阻碍拟合算法将足够的权重分配给不同的OMIC数据中包含的互补信息。为了抵消这种效果,该效果倾向于仅导致一种数据类型主导所谓的多摩斯模型,我们开发了一种新颖的工具,使用户能够在第一步中分别训练单摩尼斯模型,并在第二步中将它们集成到多摩s模型中。进行了广泛的消融研究,以促进对奇异数据类型及其组合的各自贡献的深入评估,从而有效地识别它们之间的冗余和相互依赖性。此外,单词模型的集成通过一系列不同的分类算法实现,从而可以进行性能比较。被发现与药物敏感性显着转移相关的分子事件和组织类型集可以返回,以促进对药物反应性潜在驱动因素的全面而直接的分析。我们的两步方法产生了一组实际的多媒体泛 - 批处理分类模型,这些模型对GDSC数据库中的大多数药物具有很高的预测。在具有特定作用模式的有针对性药物的背景下,其预测性能与将多词数据合并到简单的一步方法中的分类模型相比。此外,案例研究表明,它在正确识别已知的特定药物化合物的关键驱动因素以及为其他候选者提供其他药物敏感性因素方面取得了成功。
使用超级计算机,研究人员搜索了包含数百万个分子的化学文库,以找到最适合该模型的分子。然后,Karolinska Institutet的研究同事在实验中测试了预测与受体结合的分子。出乎意料的大量分子激活了TAAR1,其中最有效的一个在动物实验中也表现出了有希望的影响。
简介:黑色素瘤,一种高度侵略性的恶性肿瘤,其特征是快速转移和死亡率升高,主要起源于皮肤组织。虽然采取了手术干预,免疫疗法和靶向疗法,但对晚期黑色素瘤的预后仍然令人沮丧。在全球范围内,黑色素瘤的发病率继续升高,仅美国就报告了100,000例新病例和7,000例死亡。尽管下一代测序(NGS)促进肿瘤数据的指数生长,但目前的分析方法主要强调单基因分析,忽略了对复杂基因相互作用网络的关键见解。本研究旨在通过系统地探索黑色素瘤进展中的免疫基因调节动力学来解决这一差距。
骨关节炎(OA)是一种广泛的关节疾病,影响了全球数百万的社会负担,从而使更有效的治疗策略的发展至关重要。这篇综述提出了基于脂质的药物输送系统(DDSS)的最新进展,用于关节内施用OA疗法,包括非甾体类抗炎药,皮质类固醇,小分子疾病 - 修饰OA药物和RNA治疗药。脂质体,脂质纳米颗粒,脂质中间酶,细胞外囊泡和复合系统表现出增强的稳定性,靶向递送和扩展的关节保留率,从而有助于改善治疗结果并最小化的全身药物暴露。尽管积极的定位策略有希望,但仍需要进一步的研究来评估其在生理相关条件下的靶向效率。同时,能够提供不同治疗类别组合的多功能DDS提供协同作用和出色的OA治疗结果。这种长效系统的发展是至关重要的,在粒径和靶向capabilies中出现是至关重要的因素,这是至关重要的。此外,将软骨润滑特性与持续药物脱脂的结合在动物模型中具有潜力,值得在人类临床试验中进行进一步研究。本评论重点介绍了对新型DDSS与标准处理的直接,正面比较的关键需求,尤其是在同一药物类别中。这些比较对于准确评估它们的效率,安全性和临床适用性至关重要,并将显着塑造OA治疗的未来。
血脑屏障(BBB)在保护大脑免受有害物质的影响方面起着至关重要的作用,但也为为神经系统疾病提供药物带来了重大挑战。现有的药物输送方法通常以有限的效率而挣扎,需要侵入性程序。为了应对这些挑战,该团队确定了一种具有天然亲和力的LP菌株,该菌株对嗅觉粘膜是一种专门的组织,该组织位于鼻腔上部,负责嗅觉。该组织还为中枢神经系统提供了直接的途径,从而实现了鼻内药物的递送。