1 墨西哥特拉尔潘萨尔瓦多祖比兰医学科学与营养研究所 Guillermo Soberon Acevedo 生物化学部,2 墨西哥国立自治大学生物科学研究生。科皮尔科大学,科约阿坎,墨西哥,3 基因组学实验室,国家癌症研究所,特拉尔潘,墨西哥,4 造血和白血病实验室,细胞分化和癌症研究中心,萨拉戈萨高等研究学院,墨西哥国立自治大学,伊斯塔帕拉帕,墨西哥,5 CNC - 神经科学和细胞生物学中心,CIBB - 创新生物医学和生物技术中心,科英布拉大学,科英布拉,葡萄牙,6 功能基因组学实验室,生物医学部,FES-IZTACALA,墨西哥国立自治大学,特拉尔内潘特拉,墨西哥
摘要成人 T 细胞白血病/淋巴瘤 (ATL) 存活率低,这凸显了对创新治疗药物的迫切需求。虽然已经记录了 HDACis 在几种血液系统肿瘤中的药代动力学,但关于其对抗 ATL 的活性的研究仍存在明显差距。鉴于缺氧会对淋巴瘤细胞产生不可预测的影响,本研究旨在首次评估 MS-275 和新型类似物在缺氧条件下对 ATL 细胞的毒性作用。进行了蛋白质-蛋白质相互作用和基因集富集分析,评估了 HIF1A 和下游靶标的表达,并对 MS-275 和新型类似物与 HIF-1 a 进行了分子对接。对于体外研究,首先合成 MS-275 的苯甲酰胺类似物,然后评估缺氧条件下 MT-2 细胞的活力。富集分析证实了 HIF-1 信号通路中枢基因的参与,火山图显示 HIF1A、GAL3ST1 和 CD274 过度表达。分子对接表明 MS-275 和 HIF-1 a PAS-B 结构域的类似物之间存在有利的相互作用。alamarBlue 测定结果表明 MS-275 和类似物显著 (p < 0.001) 降低了缺氧条件下 MT-2 细胞的活力。本研究结果有望开发针对缺氧引起的 ATL 变化的新药。
尽管免疫治疗具有明显的优势,但仍存在不可避免的脱靶效应,导致严重的不良免疫反应。近年来,药物递送系统(DDS)的研究和开发日益受到重视。在几十年的发展中,DDS已显示出以精确靶向的方式递送药物以减轻副作用的能力,并具有灵活控制药物释放、改善药代动力学和药物分布的优势。因此,我们认为将癌症免疫治疗与DDS相结合可以增强抗肿瘤能力。在本文中,我们概述了癌症免疫治疗中最新的药物递送策略,并简要介绍了基于纳米载体(脂质体、聚合物纳米胶束、介孔二氧化硅、细胞外囊泡等)和偶联技术(ADC、PDC和靶向蛋白质降解)的DDS的特点。我们的目的是向读者展示不同免疫机制下的各种药物递送平台,并分析它们的优势和局限性,为癌症免疫治疗提供更优越、更准确的靶向策略。
药物开发需要时间,而且通常无法满足当今医疗保健的需求。这主要是因为将新药推向市场需要很长时间、从头药物开发的成本惊人以及开发过程中的高流失率 ( 1 )。目前对药物开发的估计表明,将新化学实体 (NCE) 开发成实际药物需要超过 12 年的时间和超过 1 亿美元 ( 2 )。即使投入了如此多的资源,也只有不到 2% 的 NCE 能够开发成药物(98% 的流失)。药物开发失败的主要原因是缺乏安全性和有效性 ( 3 )。在进行临床前研究以确定可行性之后,NCE 必须通过严格的 I 期和 II 期试验,才能在临床环境中建立良好的毒理学和药理学特征。少数通过 I 期和 II 期临床试验审查的候选药物将进入 III 期试验,以验证其在大量处于特定疾病不同阶段和合并症的患者中的临床疗效。减轻围绕新药发现和开发的不确定性,并简化临床试验流程是肿瘤学的必需品,因为癌症仍然是全球主要的公共卫生问题。一种可能的解决方案是
尿肿瘤主要由肾脏,尿路上皮和前列腺恶性肿瘤组成,这些恶性肿瘤构成了显着的治疗挑战,尤其是在晚期阶段。抗体 - 药物结合物(ADC)已成为一种有前途的治疗方法,将单克隆抗体的特殊性与细胞毒性化学治疗有效载荷相结合。本评论重点介绍了ADC应用尿肿瘤应用中的最新进展,机会和挑战。我们讨论了FDA批准的ADC和其他正在研究的新型ADC,强调了它们改善患者预后的潜力。此外,我们探讨了应对挑战的策略,例如毒性管理,预测性生物标志物识别和抵抗机制。此外,我们研究了ADC与其他治疗方式的整合,包括免疫检查点抑制剂,靶向疗法和放射治疗。通过应对这些挑战并探索创新方法,ADC的发展可能显着增强晚期尿肿瘤患者的治疗选择和结果。
关于 SURESCREEN DIAGNOSTICS SureScreen Diagnostics 在过去 25 余年一直是横向流动免疫色谱检测和诊断领域的全球领导者,专门从事传染病、媒介传播病毒、健康筛查和药物滥用检测。SureScreen 因其创新和国际贸易卓越表现而获得认可,并于 2023 年获得了两项享有盛誉的国王奖。 简介 SureScreen Diagnostics 向众议院卫生、老年护理和体育常设委员会提交了此提案,以回应其“对澳大利亚酒精和其他药物对健康影响的调查”。该提案强调,饮料中掺假是一个影响个人健康和安全的关键问题,尤其是在高风险区域、夜间行业、持牌场所和节日期间。
改进且便宜的分子诊断允许从“一种尺寸适合所有疗法”转移到针对单个肿瘤的个性化疗法。然而,基于全面测序的大量潜在目标仍然是一个尚未解决的挑战,可以阻止其在临床实践中的常规使用。因此,我们设计了一个工作流,该工作流选择基于多摩学测序和计算机药物预测的最有希望的治疗靶标。在这项研究中,我们证明了关注膀胱癌(BLCA)的工作流程,迄今为止,尚无可靠的诊断来预测治疗方法的潜在益处。在TCGA-BLCA队列中,我们的工作流程确定了由21个基因和72种药物组成的面板,这些小组建议对95%的患者进行个性化治疗,包括5个尚未报道为BLCA临床测试的预后标记。自动化的预测是通过手动策划的数据补充的,从而可以进行准确的灵敏度或抗药性指导的药物反应预测。我们根据在手动策展期间发现的陷阱讨论了药物相互作用数据库的潜在改进。
以在临床试验中测试一种药物是否与阻止致命癌症进展有关为例。定期概率更新意味着服用该药物会改变在规定的时间窗口内死于该疾病的条件概率,无论试验在何时何地进行。操纵意味着即使我们考虑影响患者生存的所有其他因素(例如年龄和合并症),药物治疗仍显示出额外的益处。反事实条件意味着如果不服用该药物,患者的死亡就不会被推迟。最后,作用机制意味着我们了解药物为何延长患者的生存期,例如通过激活肿瘤浸润免疫细胞。总之,这四个条件既确保了统计相关性,又确保了机械理解。他们将 Austin Bradford Hill 2 的因果关系标准置于因果背景中,并为在医疗保健中建立因果关系的哲学推理实施了实际测试。3
a 化学和生物防御应用分子建模实验室 (LMCBD),军事工程学院,里约热内卢/RJ,巴西;b 里约热内卢天主教大学化学系,里约热内卢/RJ,巴西;c 埃斯皮里图圣托联邦学院 - 维拉韦利亚分校化学系,维拉韦利亚/ES,巴西;d 埃斯皮里图圣托联邦大学 PPGQUI(化学研究生课程),维多利亚/ES,巴西;e 军事工程学院化学工程系,里约热内卢/RJ,巴西;f 化学、生物、放射和核防御研究所 (IDQBRN),巴西陆军技术中心 (CTEx),里约热内卢/RJ,巴西;g 化学协调,里约热内卢联邦教育科学与技术学院,里约热内卢/RJ,巴西; h 赫拉德茨克拉洛韦大学理学院化学系,捷克共和国赫拉德茨克拉洛韦; i INRS,Armand-Frappier Sant e Biotechnologie 中心 531,Boulevard des Prairies,Laval,QC,加拿大