CSIR-IIIM查mu的研究结果基于以前的研究,该研究探讨了其他物种中ABC转运蛋白的结构和功能,例如水稻[3]和拟南芥[4]。大米的研究强调了ABCI亚科的动态性质及其在盐应激反应中的潜在作用[3]。同样,拟南芥中ABC蛋白的综合清单提供了对该蛋白质家族多样性的基本理解[4]。一起,这些研究帮助绘制了ABC转运蛋白的进化模式及其在不同植物谱系中的功能作用。
甜菜根叶子由于缺乏足够的知识,尤其是其营养和作为人类食物的营养价值而被用作不足。甜菜叶富含酚类化合物,维生素和铁(Kaushik和Kavita,2020年,Lorizola等,2018)。它们在收获期间被定义为二级产品(废物)(Fernandez等,2017)。甜菜中的副产品几乎构成了整个植物的一半(Bengardino等,2019; Pellegrini和Ponce 2020; Ebrahimi等,2022)。甜菜根叶是生物活性化合物的丰富来源,例如脂肪酸,矿物质(Biondo等人2014),蛋白质(Akyüz和Ersus 2021)和多酚(Nutter等,2020)。在这些化合物中,多酚是通过抗菌,抗真菌,抗炎和抗肿瘤特性改善人类健康的强大物质。这些化合物是一组二级代谢产物,该代谢物在具有一个或多个酚类环与附着的羟基的植物中合成。它们被认为是天然抗氧化剂,通过延迟脂质氧化来提高食品质量(Ebrahimi和Lante 2021; Kolev,2022)。
2023 年,ServiceNow 推出了众多功能和能力,旨在增强合作伙伴生态系统更好地服务客户的能力。其重点是工作流程工程和 IT、OT 和 BT 的集成,其集成模块有望彻底改变美国各行业的数字工作流程。Vancouver 的发布标志着 ServiceNow 在增强自动化、智能化和灵活性方面为组织赋能的旅程中的一个重要里程碑。Vancouver 发布的一项突出功能是 Now Assist GenAI 平台,它利用先进的 ML 算法来自动执行重复任务、提供智能建议并简化决策流程。此外,ServiceNow 还推出了 Build on Now 和 Build with Now 产品,使组织能够自定义
摘要。可以使用Arrarrive时间(IT)共同传达降雨干咒和湿法(分别为DS和WS)的发生的建模(分别为DS和WS)。虽然建模的优点是需要单个拟合来描述所有降雨时间特征(包括湿链和干链,咒语概念的扩展),但对独立性的假设和续订的相同分布的假设和相同的分布在某些情况下可能不会在衍生的WS身上隐含地施加无内存的属性。In this study, two different methods for the modeling of rainfall time characteristics at the station scale have been applied: (i) a direct method (DM) that fits the discrete Lerch distribution to it records and that then derives ws and ds (as well as the corresponding chains) from the it distribution and (ii) an indirect method (IM) that fits the Lerch distribution to the ws and ds records separately, relaxing the assumptions续签过程。该应用程序在欧洲的六个站点上以广泛的降雨状态为特征,突出了几何分布如何并不总是合理地重现WS频率,即使它是通过LERCH分布很好地建模的。通过IM获得了改进的性能,这要归功于对续订时间的独立性和相同分布的假设的放松。将数据集分为两个时期时,将获得进一步改善,这表明这些推论可能会从考虑当地季节性的情况下受益。
加工鱼类产品的商业化在餐馆和中小型企业中正在上升。但是,缺乏与此类产品的微生物安全有关的数据。In this study total aerobic colony count and Enterobacteriaceae, as proxy of process hygiene criteria, and detection of Listeria monocytogenes and concentration of histamine, as food safety criteria, were investigated in Salmo salar (salmon), Xiphias gladius (swordfish) and Thunnus albacares (yellowfin tuna), before, during, and at the end of a干燥固定过程,在专用柜子中执行,在受控温度,相对湿度和通风下,长达240小时。通过培养方法和shot弹枪MET捕获性研究在测试的鱼类产品中研究了微生物参数,而通过高性能液相色谱法对组胺和其他生物胺的存在进行了研究。在原材料中,直到干固化过程结束时,肠杆菌科的浓度始终低于10 cfu/g,而总有氧菌落计数在鲑鱼中的含量为3.9至5.4 log cfu/g。 5.5和5.9日志CFU/G中的剑鱼;金枪鱼中的4.4和4.8 log cfu/g。鱼类,原材料和加工期间的pH值显着不同,除T4外,鲑鱼的开始后70小时,箭鱼和金枪鱼的114小时后发生。在特定采样点和处理结束时,水活性不同。总体而言,在测试鱼样品中鉴定的序列的79%分配给Y细菌。最丰富的门是假核,芽孢杆菌和支原体。通过shot弹枪元基因组鉴定的微生物种群在经过测试的鱼类中聚集了一个与彼此分离的。此外,与剑鱼相比,鲑鱼和金枪鱼的微生物丰富度明显更高。李斯特菌单核细胞增生植物,而shot弹枪元基因组在剑鱼和金枪鱼中检测到的读数很少(相对丰度<0.007)。组胺产生的细菌,属于藤本属,摩根菌,光细菌和克雷伯菌,主要在剑鱼中鉴定出来。但是,在任何样品中均未检测到组胺和其他生物胺。据我们所知,这是鲑鱼,箭鱼和金枪鱼,鲑鱼,剑鱼和金枪鱼,期间,之中和结束时的第一个纸张报告时间点确定。本文收集的数据可以帮助预测准备在食用前储存期间食用干燥鱼产品的风险概况。
评估区域医院洗衣房的温室气体(GHG)排放的抽象目标,以及可以减少它们的模型方式。设计一个基于严重过程的归因生命周期评估。设置一个大型医院洗衣店,在英格兰西南部提供医院。人口所有的洗衣店在2020 - 21年和2021 - 22年财政年度通过该单位进行了处理。主要结果衡量处理一个洗衣物品的平均碳足迹,如二氧化碳等效物(CO 2 e)所示,以100年以上的全球变暖潜力表示。结果平均每年洗衣单位温室气体排放为2947 T CO 2 e。平均温室气体排放量为0.225千克CO 2 E每项用途和0.5080千克CO 2 E/kg洗衣店。天然气使用贡献了75.7%的现场温室气体排放。使用全国电网电力在2020-2022的锅炉电气化将使温室气体排放量增加9.1%,但是,根据国家电网脱碳趋势,到2030年,这将使年度排放量减少31.9%。每项与运输相关的温室气体排放量大大减少。一次性洗衣项目替代品会导致每次使用温室气体的排放量明显更高,即使可重复使用的洗衣店长途运输并在其寿命结束时焚化。结论洗衣单元具有较大的碳足迹,但是每项温室气体排放量与使用单利用替代方案相比,温室气体的排放量很小,并且要低得多。锅炉的未来电气化和最佳输送车载负载可以减少每洗衣物品的温室气体排放。
光子整合技术已成为大量现有和利基应用程序的核心,就像微电子技术在[1]之前开发的几十年一样。以光子学为关键的促成技术[2],集成是具有稳定,便携式和低功耗设备的成本效益填充应用程序市场的自然路径,类似于电子集成电路的传播。虽然光子整合技术的主要应用程序开发在Tele/DataCom [3,4]领域,但这些领域逐渐进入了其他领域,例如土木工程[5],生物和生命科学[6],环境传感[7-10]和自动动力[11],以及许多其他领域。自然而然地,光子整合技术开发的最初努力专门用于整体整合,以建立稳定且可加入的单个平台。关键因素是纳入通用技术哲学[12,13]。这些早期活性基于硅(SI),磷化物(INP)和氮化硅(SIN)材料[14-17]的三种主流技术。尽管如此,当前的评论和路线图[18-20]倡导混合和异质整合[21,22],承认使用单个材料平台的使用不能涵盖所有现有的应用程序。SI和SIN膜的整体组合也是研究的主题[23,24]。与基于SI指南的平台和二氧化硅平台(所谓的Planar Lightwave电路,PLC [27])相比,Sin Photonics将两者的良好特征结合在一起。由IIII-V半导体带来,并带有检测和调节,也存在于Si Photonics中,但指导光的非常基本的功能是SIN光子学的关键优势,无论是线性和非线性方案,都得到了SI 3 n N 4的固有的光学宽带,均受si 3 n 4的固有宽带(米将)[sir-nif-nif)[ 26]。 与PLC相比,由于较高的指数对比度以及光学模式的限制,但具有可比的传播损失,因此提供了减少的足迹。 与SI纳米线光子学相比,后者是一个优势[14],但与厚的Si光子学相比[17]。 因此,罪可以广泛地说一个平台,将良好的传播损失数字和足迹结合在一起,以及覆盖Vis波长范围的附加值。由IIII-V半导体带来,并带有检测和调节,也存在于Si Photonics中,但指导光的非常基本的功能是SIN光子学的关键优势,无论是线性和非线性方案,都得到了SI 3 n N 4的固有的光学宽带,均受si 3 n 4的固有宽带(米将)[sir-nif-nif)[ 26]。 与PLC相比,由于较高的指数对比度以及光学模式的限制,但具有可比的传播损失,因此提供了减少的足迹。 与SI纳米线光子学相比,后者是一个优势[14],但与厚的Si光子学相比[17]。 因此,罪可以广泛地说一个平台,将良好的传播损失数字和足迹结合在一起,以及覆盖Vis波长范围的附加值。由IIII-V半导体带来,并带有检测和调节,也存在于Si Photonics中,但指导光的非常基本的功能是SIN光子学的关键优势,无论是线性和非线性方案,都得到了SI 3 n N 4的固有的光学宽带,均受si 3 n 4的固有宽带(米将)[sir-nif-nif)[ 26]。 与PLC相比,由于较高的指数对比度以及光学模式的限制,但具有可比的传播损失,因此提供了减少的足迹。 与SI纳米线光子学相比,后者是一个优势[14],但与厚的Si光子学相比[17]。 因此,罪可以广泛地说一个平台,将良好的传播损失数字和足迹结合在一起,以及覆盖Vis波长范围的附加值。由IIII-V半导体带来,并带有检测和调节,也存在于Si Photonics中,但指导光的非常基本的功能是SIN光子学的关键优势,无论是线性和非线性方案,都得到了SI 3 n N 4的固有的光学宽带,均受si 3 n 4的固有宽带(米将)[sir-nif-nif)[ 26]。与PLC相比,由于较高的指数对比度以及光学模式的限制,但具有可比的传播损失,因此提供了减少的足迹。与SI纳米线光子学相比,后者是一个优势[14],但与厚的Si光子学相比[17]。因此,罪可以广泛地说一个平台,将良好的传播损失数字和足迹结合在一起,以及覆盖Vis波长范围的附加值。
随着迅速扩大的电动汽车(EV)市场,由于与常规的锂离子电池(LIBS)相比,由于其固有的优势和高能量密度的固有优势,迫切需要开发全稳态的LI电池(ASSB)。1将无机固体电解质(SES)作为必不可少的组件掺入可以利用Li金属阳极和高能量密度阴极,从而增加了能量密度。2领先的Sul sulsulese材料,例如Li 9.54 SI 1.74 P 1.44 S 11.7 Cl 0.3和Li 6.6 Si 0.6 SB 0.6 SB 0.5 S 5 I,在室温下在10 ms-cm-1上实现了极高的LI +电导率,在室温下,使用这些材料在室温下具有出色的液体效果,证明其具有杰出的液体性能与它们的液体效果相比可比性。3,4此外,sulsulsEs具有显着的低杨氏模量,可在室温下易于容易。5