洗衣机/干燥机能量Star®干衣机比传统的干衣机使用少约20%,而最有效的干衣机使用热泵技术。电动范围感应S型比天然气和电阻炉更节能。感应炉的效率高达90%,而电阻炉灶约为75%,气炉效率约为40%。
非循环冷冻式干燥机设计为连续运行,在所有负载下几乎消耗 100% 的标称功率。因此,设施是否运行并不重要 - 非循环干燥机将继续运行,无论任何给定时间的空气需求如何。如上所述,配备数码涡旋技术的干燥机可以根据实时空气负载需求自动加载或卸载,这一特点使 MK-DS 系列比任何其他类型的冷冻式空气干燥机更节能。
非循环冷冻式干燥机设计为连续运行,在所有负载下几乎消耗 100% 的标称功率。因此,设施是否运行并不重要 - 非循环干燥机将继续运行,无论任何给定时间的空气需求如何。如上所述,配备数码涡旋技术的干燥机可以根据实时空气负载需求自动加载或卸载,这一功能使 MK-DS 系列比任何其他类型的冷冻式空气干燥机更节能。
Arrow Pneumatics 外部加热双塔再生干燥机结合了我们“RH”系列干燥剂干燥机的高可靠性,并增加了外部加热器,形成了“RE”系列干燥机。露点通常为 –40°F,可选低至 –100°F。吹扫空气约为额定流量的 7%,因此与无热再生干燥机相比,加热双塔再生干燥机的运行成本更低。“RE”系列中的吹扫空气由安装在外部安装外壳中的 100% 高效 incoloy 护套电加热器加热。恒温器控制加热器的温度,可延长使用寿命并节省能源。加热器和吹扫管道经过绝缘处理,以确保安全并进一步节省能源。Arrow “RE” 系列加热干燥机配有微处理器控制器,安装在 NEMA4 级外壳内。气动阀门使用寿命长,气流速度快。
过去 50 年来,美国的加速谷物干燥主要通过高温谷物干燥机实现,这种干燥机通常使用天然气或液化丙烷 (LP) 作为热源。这些干燥机还需要一些电力来为系统上的风扇和电机供电。这会给生产者带来巨大的能源开支。除了通常较高的能源成本之外,高温干燥机还会产生不均匀的干燥,从而导致过度干燥或干燥不足,这有可能损坏谷物(出现裂纹、裂缝等),所有这些都可能导致商品价格下降并给农场带来利润损失。本文讨论了当前的谷物干燥技术、这些系统的效率以及一种潜在的新型谷物干燥技术,该技术可能为改善谷物干燥、降低谷物干燥成本和提高谷物质量带来机会。
每小时100,000磅(PPH)生物量锅炉为两个贴面干衣机,23个对数条件隧道和发电发电生成蒸汽。蒸汽还用于产生热水以在剥皮之前剥落原木。干燥单板所需的300 psig蒸汽也源自锅炉。干燥机的闪光蒸汽用于增加蒸汽供应到单板干燥过程。单板干燥机排气被捕获,并将其重新安装到锅炉上,以用作燃烧空气。贴面干燥器通常使用总蒸汽容量的30-40%,并且将剩余的蒸汽重新装饰到涡轮耦合发电机以产生电力。该植物每天消耗360吨木本生物量(每年131,400吨),其中一半来自两个不同的铣削操作的地点。剩余的生物质是在外部购买的。
硅胶已被广泛用作食品,药物和其他各种目的的干衣机。硅胶基本上是一种安全的材料,但是由于其水平性质,硅胶很容易被危险材料污染。除此之外,硅胶不能自然地自然分解,因此使用大量硅胶会导致大量的硅胶废料。因此,正在努力寻找替换材料,其中一种是使用稻壳灰很容易自然分解的煤灰。这项研究旨在测试稻壳灰作为硅胶的替代品。测试在非编织土工织物袋(SG-N)中使用了商业硅胶(SG),硅凝胶和非织造土工织物袋(AS-N)中的稻壳灰。在这项研究中,将AS-N与SG和SG-N进行了比较。 对15克的重量进行了180分钟的水蒸气吸收测试。 将三个样品中的每一个都放在一个封闭的罐子中,以避免在环境中对水蒸气的污染。 用湿度计测量每个罐子的相对湿度。 在整个测试过程中,罐子盖一直关闭。 结果表明,SG,SG-N和AS-N分别降低了23%,22%和24%。 使用AVRAMI方程进行建模用于推断吸收结果。 研究结果表明,与硅胶和硅胶非织造土工杂志相比,15克非编织土工壳灰的水蒸气吸收能力优越。 因此可以得出结论,用稻壳灰作为基本材料的干衣机可用于烘干机,食品干燥机和其他需求等需求。在这项研究中,将AS-N与SG和SG-N进行了比较。对15克的重量进行了180分钟的水蒸气吸收测试。将三个样品中的每一个都放在一个封闭的罐子中,以避免在环境中对水蒸气的污染。用湿度计测量每个罐子的相对湿度。在整个测试过程中,罐子盖一直关闭。结果表明,SG,SG-N和AS-N分别降低了23%,22%和24%。使用AVRAMI方程进行建模用于推断吸收结果。研究结果表明,与硅胶和硅胶非织造土工杂志相比,15克非编织土工壳灰的水蒸气吸收能力优越。因此可以得出结论,用稻壳灰作为基本材料的干衣机可用于烘干机,食品干燥机和其他需求等需求。
nano R4 冷冻式空气干燥机专为可靠性、性能和低拥有成本而设计。它们具有低压降不锈钢热交换器、不锈钢水分分离器、环保制冷剂、用于精确控制的 TXV 以及简单但功能强大的电子控制器。R4 让您高枕无忧,因为下游设备将受到保护,免受有害水分污染。
本研究讨论了太阳能和风能辅助混合干燥系统的能量、能量和可持续性分析。干燥过程由太阳能干燥器进行。风能用于提供干燥装置中风扇运行所需的电能。因此,干燥过程不需要外部能源。这项研究的主要目的是促进开发一种经济且环保的干燥系统,该系统仅使用两种不同的可再生能源来运行。实验确定了香蕉片的干燥特性。实验结果发现,干燥机的能量效率在 68.04 到 83.89% 之间。还从废物能量率、改进潜力和环境可持续性方面对该系统进行了检查。评估表明,与其他传统太阳能干燥机和太阳能辅助混合干燥机相比,混合干燥机的能量效率分别高出 57.7% 和 21.52%。此外,能源回收期确定为 1.36 年。这一结果清楚地表明,与其他太阳能干燥机相比,该系统可以在大约 38.18% 的时间内回收其消耗的能源。© 2022 Elsevier Ltd. 保留所有权利。
通常,冷冻空气干燥器用于通用工厂空气。然而,压缩空气中仍残留大量水蒸气,远远超过大多数应用所能容忍的量(经过压力露点 (PDP) 为 -40˚F (-40˚C) 的干燥剂干燥器后的空气比经过 PDP 为 +37.4˚F (+3˚C) 的冷冻空气干燥器后的空气干燥约 60 倍)。许多关键应用要求 PDP 远低于冷冻干燥器提供的 PDP
