在 CRISPR-Cas 系统中,Cas13a 是一种 RNA 引导的 RNA 核酸酶,专门靶向单链 RNA。我们开发了一种 Cas13a 介导的 CRISPR 干扰工具,以靶向 mRNA 来实现蚊子的基因沉默。通过胸内注射将表达 Cas13a 的质粒递送给蚊子,递送后至少 10 天仍可检测到 Cas13a 转录本。使用 T7 RNA 聚合酶在体外合成靶向特异性 crRNA。Cas13a 质粒和靶向 crRNA 可以通过胸内注射一起递送,或者可以先提供 Cas13a 构建体,然后在适当的时候提供靶向 crRNA。在两种蚊子中测试了该机制。在冈比亚按蚊中,卵黄蛋白基因被 Cas13a/Vg-crRNA 沉默,同时伴有产卵量显著下降。在埃及伊蚊中,COPI 基因的 α 和 δ 亚基被 Cas13a/crRNA 沉默,导致死亡和中肠脆弱,重现了之前报道的表型。当提供目标 crRNA 混合物时,可以同时实现基因共沉默。研究中未观察到非目标转录本的可检测的附带切割。除了 dsRNA 或 siRNA 介导的 RNA 干扰外,可编程的 CRISPR 干扰方法提供了一种在蚊子中敲除基因的替代方法。
左撇子双链RNA(DSRNA)的感知相关性目前正在发生范式转移。历史研究表明,RNA分子中的某些区域可能在某些高盐条件下采用左手构象(Hall等人1984),与DNA相似(Jovin等人1987)。 在更多的生理问题下,可以实现此称为“ Z-RNA”的曲折双螺旋,例如,如果在某些po中修改了RNA(uesugi等人。 1984; Nakamura等。 1985; Rao and Kollman 1986; Teng等。 1989)。 Z-RNA的整体不稳定志群对其生物学的关系一直引起了人们的关注。 随着时间的流逝,进行了观察,这些观察已经开始提高细胞中Z-RNA存在的争议。 尤其是,在识别核酸的许多蛋白质中,有几种识别DNA和RNA的Z符合性,专门使用类似的翼螺旋Zα域特异性(Gajiwala和Burley 2000; Placido等; Placido等人。 2007;张等。 2020)。 值得注意的是,这些Z结合蛋白会超然参与病毒感染和先天性反应(Athanasiadis 2012)。 在Cyto- 中检测到与针对Z-RNA提出的抗体结合的RNA1987)。在更多的生理问题下,可以实现此称为“ Z-RNA”的曲折双螺旋,例如,如果在某些po中修改了RNA(uesugi等人。1984; Nakamura等。 1985; Rao and Kollman 1986; Teng等。 1989)。 Z-RNA的整体不稳定志群对其生物学的关系一直引起了人们的关注。 随着时间的流逝,进行了观察,这些观察已经开始提高细胞中Z-RNA存在的争议。 尤其是,在识别核酸的许多蛋白质中,有几种识别DNA和RNA的Z符合性,专门使用类似的翼螺旋Zα域特异性(Gajiwala和Burley 2000; Placido等; Placido等人。 2007;张等。 2020)。 值得注意的是,这些Z结合蛋白会超然参与病毒感染和先天性反应(Athanasiadis 2012)。 在Cyto- 中检测到与针对Z-RNA提出的抗体结合的RNA1984; Nakamura等。1985; Rao and Kollman 1986; Teng等。 1989)。 Z-RNA的整体不稳定志群对其生物学的关系一直引起了人们的关注。 随着时间的流逝,进行了观察,这些观察已经开始提高细胞中Z-RNA存在的争议。 尤其是,在识别核酸的许多蛋白质中,有几种识别DNA和RNA的Z符合性,专门使用类似的翼螺旋Zα域特异性(Gajiwala和Burley 2000; Placido等; Placido等人。 2007;张等。 2020)。 值得注意的是,这些Z结合蛋白会超然参与病毒感染和先天性反应(Athanasiadis 2012)。 在Cyto- 中检测到与针对Z-RNA提出的抗体结合的RNA1985; Rao and Kollman 1986; Teng等。1989)。 Z-RNA的整体不稳定志群对其生物学的关系一直引起了人们的关注。 随着时间的流逝,进行了观察,这些观察已经开始提高细胞中Z-RNA存在的争议。 尤其是,在识别核酸的许多蛋白质中,有几种识别DNA和RNA的Z符合性,专门使用类似的翼螺旋Zα域特异性(Gajiwala和Burley 2000; Placido等; Placido等人。 2007;张等。 2020)。 值得注意的是,这些Z结合蛋白会超然参与病毒感染和先天性反应(Athanasiadis 2012)。 在Cyto- 中检测到与针对Z-RNA提出的抗体结合的RNA1989)。Z-RNA的整体不稳定志群对其生物学的关系一直引起了人们的关注。随着时间的流逝,进行了观察,这些观察已经开始提高细胞中Z-RNA存在的争议。尤其是,在识别核酸的许多蛋白质中,有几种识别DNA和RNA的Z符合性,专门使用类似的翼螺旋Zα域特异性(Gajiwala和Burley 2000; Placido等; Placido等人。2007;张等。 2020)。 值得注意的是,这些Z结合蛋白会超然参与病毒感染和先天性反应(Athanasiadis 2012)。 在Cyto- 中检测到与针对Z-RNA提出的抗体结合的RNA2007;张等。2020)。值得注意的是,这些Z结合蛋白会超然参与病毒感染和先天性反应(Athanasiadis 2012)。在Cyto-
秀丽隐杆线虫是一种用于研究发育和衰老遗传学的多功能模型生物,通过给线虫喂养表达特定 dsRNA 的细菌可以抑制其基因表达。之前已证实通过常规转基因技术过表达缺氧诱导因子 1 ( hif-1 ) 或热休克因子 1 ( hsf-1 ) 可延长线虫寿命。然而,目前尚不清楚其他基因过表达方法是否可行,尤其是随着基于 CRISPR 的技术的出现。本文中,我们表明,给经过基因改造以稳定表达 Cas9 衍生的合成转录因子的秀丽隐杆线虫喂养表达启动子特异性单向导 RNA (sgRNA) 的细菌也可以激活基因表达。我们证明,通过摄取针对 hif-1 或 hsf-1 各自启动子区域的 sgRNA 激活 CRISPR 可增加基因表达并延长秀丽隐杆线虫的寿命。此外,作为旨在使用 CRISPR 激活秀丽隐杆线虫的未来研究的计算机资源,我们提供了预测的启动子特异性 sgRNA 靶序列,用于超过 13,000 个秀丽隐杆线虫基因,并具有实验定义的转录起始位点。我们预计本文描述的方法和组件将有助于促进全基因组基因过表达研究,例如,通过将表达 sgRNA 的细菌喂给线虫来诱导转录,以识别衰老或其他感兴趣的表型的调节因子。
在正在进行的蒙基蛋白爆发中,迫切需要快速开发有效的治疗干预措施,能够抵消Monkeypox病毒(MPXV)采用的免疫逃避机制。逃避策略涉及F3L蛋白与DSRNA的结合,从而导致干扰素(IFN)产生减少。因此,我们当前的研究重点是利用虚拟药物筛选技术来靶向F3L蛋白的RNA结合结构域。在南非天然化合物数据库内的954种化合物中,只有四个显示出显着的对接得分: - 6.55, - 6.47, - 6.37和 - 6.35 kcal/mol。解离常数(KD)分析表明,MPXV中F3L的最高点命中1-4(-5.34, - 5.32, - 5.29和-5.36 kcal/mol)的结合效果更强。对顶部命中1至4的全原子模拟始终显示出稳定的动力学,这表明它们与界面残基有效相互作用的潜力。通过分析参数,例如回旋半径(RG),均方根波动和氢键,进一步证实了这一点。对结合自由能的累积评估在所有化合物中确认了表现最佳的候选物,其值分别为-35.90, - 52.74,-28.17和-32.11 kcal/ mol,用于最高点1-4。这些结果表明,最高点1-4的化合物可以对推进创新的药物疗法有很大的希望,这表明它们适合体内和体外实验。
第1天(星期五2月21日):发现科学(9:10 - 09:15)欢迎和认可国家 - 凯特·施罗德(Kate Schroder)教授(9:15 - 09:25)开放式观点 - 卡伦·杜兰特(Karen Durrant)(自动发炎联盟)和纳塔利·伯利亚特(Natalie Billiard)(Zoe's Angels)(9:25 - 9:25 - 9:25 - 9:40 and and and and and and and and and and and and and and?- 塞思·马斯特斯(Hudson Institute)教授(9.40-10.45)会议1:自动炎症的机制(9.40-10.05)ADAR1介导的细胞DSRNA的A-to-I RNA编辑I型I Interferon和AutoInflammation和AutoInflammation and AutoInflammation and AutoInflampation and AutoInflampation-prif Carl Walkley(Hudson Instell) A/A教授Julia Ellyard(ANU)(10.25-10.45)补充因素I缺乏症相关的神经炎症与旧秩序阿米什人之间的神经炎症 - A/a/a/a/a/a/a neil Romberg教授(美国费城儿童医院)(10:45 - 11:15)早晨茶(11:15 - 11:15 - 11.45 - 11.45) TBC 11.45-12:30会议2:免疫细胞失调(.45-12:05)免疫缺陷和自身炎症 - 伊利亚·沃斯科博伊尼克教授(Peter MacCallum Cancer Center)(Peter MacCallum Cancer Centre)(12.05-12.25) HMGCS1,大甲甲酸途径的新自身炎症基因 - Dhanya Lakshmi(Wehi),(学生谈话)(12.35-12.45)英国Biobank的Mosaic自动炎性疾病变体 - Ricky Nguyen(Ricky Nguyen(Garvan Institute),学生谈话
小球形头足动物通过腺苷脱氨基表现出异常广泛的mRNA,但尚不清楚基本机制。由于作用于RNA(ADAR)酶的腺苷脱氨酶会催化这种形式的RNA编辑,因此头足类直系同源物的结构和功能可能会提供线索。最近的基因组测序项目提供了蓝图,以全面互补。我们实验室的先前结果表明,Squid表达了一个ADAR2同源物,具有两个名为SQADAR2A和SQADAR2B的剪接变体,并且这些消息经过广泛编辑。基于章鱼和鱿鱼基因组,转录组和cDNA克隆,我们发现在小卵形中表达了另外两个ADAR同源物。第一个与脊椎动物ADAR1直系同源。与其他ADAR1不同,它包含一个新型的N末端结构域,为641 AA,预测为无序,包含67个磷酸化基序,并且具有氨基酸组成,丝氨酸和碱性氨基酸的氨基酸组成异常高。编码sqadar1的mRNA本身是广泛编辑的。也存在于任何脊椎动物同工型的直系同源的sqadar/d-like酶。编码SQADAR/D类的消息未编辑。使用重组SQADAR的研究表明,仅在完美的双链dsRNA和鱿鱼钾通道mRNA底物上,只有SQADAR1和SQADAR2是活跃的腺苷脱氨酶。sqadar/d样对这些底物没有活性。对这些底物没有活性。总体而言,这些结果揭示了SQADARS中的一些独特特征,这些特征可能会导致头足类动物中观察到的高级RNA回收。
作用于 RNA ADAR1 的腺苷脱氨酶促进双链和结构化 RNA 中的 A 到 I 转换。ADAR1 有两种异构体,它们从不同的启动子转录:细胞质 ADAR1p150 是干扰素诱导的,而 ADAR1p110 是组成性表达的,主要位于细胞核中。ADAR1 突变会导致艾卡迪-戈蒂埃综合征 (AGS),这是一种与异常 IFN 产生相关的严重自身炎症疾病。在小鼠中,ADAR1 或 p150 异构体的缺失会导致胚胎死亡,这是由干扰素刺激基因的过度表达引起的。这种表型通过删除细胞质 dsRNA 传感器 MDA5 得到挽救,表明 p150 同工型是不可或缺的,不能被 ADAR1p110 挽救。尽管如此,ADAR1p150 唯一针对的编辑位点仍然难以捉摸。在这里,通过将 ADAR1 同工型转染到无 ADAR 的小鼠细胞中,我们检测到了同工型特异性的编辑模式。使用突变的 ADAR 变体,我们测试了细胞内定位和 Z-DNA 结合域的存在如何影响编辑偏好。这些数据表明 ZBD 对 p150 编辑特异性的贡献很小,而同工型特异性编辑主要由 ADAR1 同工型的细胞内定位指导。我们的研究通过对异位表达标记 ADAR1 同工型的人类细胞的 RIP-seq 进行补充。两个数据集均表明 ADAR1p110 富集了内含子编辑和结合,而 ADAR1p150 优先结合和编辑 3'UTR。
抽象背景:自然界中的植物或田间的农作物与包括细菌,真菌和病毒在内的多种有益或寄生生物相互作用。病毒非常专业,可以感染有限的宿主植物,在极端情况下导致宿主的全部入侵和患病的表型。对病毒的耐药性可以通过各种被动或主动机制介导,包括RNA - 沉默机制和先天免疫系统。主要文本:RNA沉淀机制可能会抑制病毒复制,而病毒成分可以引起先天免疫系统。成功进入植物细胞的病毒可以引起模式触发的免疫力(PTI),尽管尚未通过未知的机制。作为反辩护,病毒抑制了PTI。此外,可以通过细胞内免疫受体(耐药蛋白)检测病毒活力蛋白(AVR),以引起效应触发的免疫(ETI)。eti通常最终在局部编程的细胞死亡反应,高敏反应(HR)中,并伴随着有效的全身防御反应。在二分法中,RNA沉默和先天免疫被视为两种抗性机制。在这里,我们回顾了这两个调节系统之间的复杂联系和相似之处,这些系统统称为确保植物的健身和弹性。结论:转录水平上对免疫调节的详细理解为通过基于RNA的技术增强植物对病毒的抗性提供了新的机会。我们描述了宿主RNA介导的病毒抗性调节的主要例子。然而,大量使用RNA技术需要对RNA基因调节的分子机制进行透彻的了解。关键字:电阻,DSRNA,VAMP,PRRS,NLR,宽光谱抗性,RNA沉默
生物技术及其各种应用是12类生物学课程的关键部分。学生可以在提供的链接上访问该主题的详细说明,练习论文和研究材料。这些注释涵盖了与生物技术及其在农业和医学中的应用有关的关键概念,定义,实例和重要点。这些笔记旨在帮助学生更好地了解该主题,并为JEE,NEET,UPSC等竞争性考试做准备。关于生物技术及其应用的12类生物学注释可以下载为PDF文件,以供将来参考。The education boards covered by these notes include CBSE, CISCE, AHSEC, CHSE Odisha, CGBSE, HBSE, HPBOSE, PUE Karnataka, MSBSHSE, PSEB, RBSE, TBSE, UPMSP, UBSE, BIEAP, BSEB, GBSHSE, GSEB, JAC, JKBOSE, KBPE, MBOSE, MBSE, MPBSE,NBSE,DGE TN,TSBIE,COHSEM,WBCHSE。学生还可以访问12类生物学生物技术及其应用的NCERT解决方案,以获取所有答案。解决方案包含解决所有问题的问题,答案和步骤。这些笔记与印度的所有董事会有关,可以用作竞争性考试的研究材料。涉及生物制药和生物学的工业规模生产。应用包括治疗学,诊断,遗传改性的农作物,加工食品,生物修复,废物处理和能源生产。三个关键的研究领域是:(i)作为催化剂(通常是微生物或纯酶)发展的改善生物。(ii)催化剂作用的工程师最佳条件。(b)有机农业。(iii)下游加工技术以净化蛋白质/有机化合物。农业中的生物技术应用涉及三种选择:(a)基于农业化学的农业。(c)基于作物的基于基因的农业。绿色革命增加了由于改善农作物品种,农业化学和更好的管理实践而增加的粮食生产。植物中的遗传修饰已导致农作物变得越来越耐受性胁迫,减少对化学农药的依赖,收获后损失减少以及矿物质使用效率提高。某些应用包括耐药植物的生产,从而减少农药的使用。bt毒素是由细菌产生的,并在植物中表达以提供对昆虫的抗性,从而产生了诸如BT棉,Bt玉米,金米,番茄,土豆和大豆等生物农药。bt棉是使用苏云金芽孢杆菌(BT)的菌株创建的。该细菌会产生杀死某些昆虫的蛋白质。毒素作为非活性素毒素存在,但在昆虫的肠道中变得活跃,导致细胞肿胀和裂解导致死亡。特定的BT毒素基因是从苏云金芽孢杆菌中分离出来的,并将其掺入棉花等几种作物植物中。大多数BT毒素是特定于昆虫组的。使用生物技术过程开发了耐虫害的植物。例如,RNA干扰(RNAi)用于针对感染烟草植物的线虫,从而减少产量。在此处给出的文字:由于补充DSRNA而导致特定mRNA的沉默。4。I.II。 iii。II。iii。它发生在所有真核生物中,是一种细胞防御的方法。(c)dsRNA结合并防止mRNA的翻译(沉默)。(d)该互补RNA的来源可能来自具有RNA基因组或移动遗传元件(转座子)的病毒感染,这些病毒通过RNA中间体复制。(E)农业载体用于将线虫特异性基因引入宿主植物。它在宿主细胞中同时产生感官和抗沉思RNA。(f)这两个RNA相互互补并形成双链RNA(dsRNA),该RNA(dsRNA)启动RNAi并因此使线虫的特定mRNA保持沉默。(g)寄生虫无法在转基因宿主中生存,表达特定的干扰RNA。因此,转基因植物受到寄生虫的保护。在医学中的生物技术应用,通过实现大规模生产安全,更有效的治疗药物,对医疗保健领域产生了巨大影响。(a)重组治疗剂不会像从非人类来源分离出的类似产品那样诱导不必要的免疫反应。(b)目前,已批准了大约30种重组治疗剂在世界范围内使用人类。在印度,目前有12个正在销售。基因设计的胰岛素可导致足够的胰岛素可用于管理成人发作的糖尿病。(a)用于糖尿病的胰岛素较早从屠宰的牛和猪的胰腺中提取。这引起了某些患者过敏或其他反应。(b)胰岛素由两个短多肽链组成,即链-A和B,由二硫键桥连接在一起。在哺乳动物中促胰岛素成熟为胰岛素(简化)(c),胰岛素被合成为激素(需要在它变成完全成熟和功能性激素之前对其进行处理),其中包含一种称为C肽的额外拉伸。(d)成熟胰岛素中不存在C肽,并在成熟成胰岛素中去除。因此,使用rDNA技术生产胰岛素的主要挑战是将胰岛素组装成成熟的形式。(e)1983年的美国公司Eli Lilly,准备了与人类胰岛素A和B链相对应的两个DNA序列,并将它们引入大肠杆菌的质粒中以产生胰岛素链。链A和B分别产生,通过产生二硫键以形成人类胰岛素来提取和组合。通过基因工程生产疫苗这种疫苗称为重组疫苗,也称为“亚基疫苗”或“第二代疫苗”,例如乙型肝炎。这是两种类型:(a)蛋白质疫苗对疫苗中rDNA产生的特定蛋白质的使用。(b)使用基因工程DNA的DNA疫苗被注射为疫苗,以产生免疫反应。肝炎疫苗含有病毒包膜蛋白,乙型肝炎表面抗原(HB8 AG)。该基因是从酵母载体中分离出来的。从病原体中分离出的一些蛋白质编码基因也被掺入并在植物中表达产生抗原,也称为可食用疫苗。基因疗法是一种允许在儿童或胚胎中诊断的基因缺陷的方法集合。(a)基因被插入人的细胞和组织以治疗疾病。(b)遗传缺陷的纠正涉及将正常基因递送到基因疗法中,并进行疾病治疗的分子诊断和早期检测•基因治疗已用于治疗一个四岁的腺苷脱氨酶(ADA)缺乏症的女孩,这是1990年代的首次使用。ADA缺乏是由腺苷脱氨酶的基因缺失引起的。通过破坏线虫特异性RNA,使植物免受线虫的侵害。这个想法是将这项技术应用于基因工程胰岛素的生产。在糖尿病病例中,个体不会产生适当的胰岛素,导致血糖水平升高。获取胰岛素的传统方法涉及从诸如cattles和猪等动物中提取胰岛素,但是这些有缺点,例如过敏反应以及疾病转移到人类的风险。胰岛素以一种称为胰岛素的非活性形式释放,该胰岛素具有三个多肽链-a,b和C。通过成熟,这变得活跃,失去了额外的C-溶肽链。首次通过为人类成熟胰岛素的多肽链A和B制备DNA序列,首次使用rDNA技术产生胰岛素。基因治疗是另一种旨在通过向患者提供有缺陷基因的副本来治愈遗传遗传疾病的应用。它涉及诸如骨髓移植,酶替代疗法或将功能基因引入细胞之类的方法。第一种临床基因治疗是用于ADA缺乏症,影响嘌呤代谢。这涉及将功能性ADA cDNA引入淋巴细胞中,然后将其返回给患者。分子诊断对于早期疾病诊断和治疗至关重要。这涉及使用各种方法(例如血清测试)在早期识别疾病。早期发现HIV,癌症等疾病对于有效治疗至关重要。 但是,但是,诸如尿液分析之类的常规方法不提供预警信号。免疫吸收测定法(ELISA) - 通过抗原抗体反应检测病原体的存在。转基因动物是通过将外源基因引入其DNA中产生的。 这些动物用于:▪研究正常的生理学和发育▪建模人类疾病,例如癌症,囊性纤维化和阿尔茨海默氏症■生产生物学产品,例如α-1-抗抗蛋白酶(如α-1-抗抗肽),人蛋白质增强的牛奶,等等。例如geac。 印度的工程批准委员会规定使用转基因(GM)生物用于公共服务,以确保其安全。 但是,对食物和医学来源的生物的修改和使用引起了人们对专利赠款的关注。早期发现HIV,癌症等疾病对于有效治疗至关重要。但是,诸如尿液分析之类的常规方法不提供预警信号。免疫吸收测定法(ELISA) - 通过抗原抗体反应检测病原体的存在。转基因动物是通过将外源基因引入其DNA中产生的。这些动物用于:▪研究正常的生理学和发育▪建模人类疾病,例如癌症,囊性纤维化和阿尔茨海默氏症■生产生物学产品,例如α-1-抗抗蛋白酶(如α-1-抗抗肽),人蛋白质增强的牛奶,等等。例如geac。印度的工程批准委员会规定使用转基因(GM)生物用于公共服务,以确保其安全。但是,对食物和医学来源的生物的修改和使用引起了人们对专利赠款的关注。公司已获得使用遗传材料,植物和生物资源的产品和技术专利,这些产品长期以来一直使用农民和土著人民。专利通常授予一定期限的发明权,不包括其他人未经许可使用或出售发明。印度政府允许像美国这样的公司获得专利的GM稻米品种,例如Basmati Rice,尽管它来自现有的印度农民的品种。这引发了关于知识产权和传统知识所有权的争议。此外,跨国公司已被指控生物流产,这涉及未经授权使用的生物资源和传统知识,而没有赔偿性付款。这些国家拥有丰富的生物多样性和传统知识,而工业国家通常在财务上富有,但缺乏这些资源。为了解决这个问题,一些国家已经制定了法律,以防止其生物资源和传统知识的开采。
RNA干扰(RNAi)是一种生物技术工具,用于植物中的基因沉默,具有内源性和外源性应用。内源性方法,例如宿主诱导的基因沉默(HIG),涉及基因修饰(GM)植物,而外源方法包括喷雾诱导的基因沉默(SIGS)。RNAi机制取决于引入双链RNA(dsRNA),该RNA被处理成简短的干扰RNA(siRNA),从而降低了特定的Messenger RNA(mRNA)。然而,由于序列同源性或siRNA诱导的表观遗传变化,对非目标生物和GM植物的意外影响是一个问题。EPA和EFSA等监管机构强调需要进行全面的风险评估。检测意外效果是复杂的,通常依靠生物信息学工具和不靶向的分析(例如转录组学和代谢组学),尽管这些方法需要广泛的基因组数据。本综述旨在对植物中不同来源的简短干扰RNA引起的RNAi效应的机制进行分类,并确定可用于检测这些作用的技术。此外,总结了实际案例研究,并讨论了以前对基因修饰植物中的意外RNAi效应进行了研究。当前文献受到限制,但表明RNAi是相对特定的,在GM作物中几乎没有意外的影响。但是,需要进一步的研究来充分理解和减轻潜在风险,尤其是与转录基因沉默(TGS)机制相关的风险,这些机制比转录后基因沉默(PTGS)不那么可预测。尤其是应用不靶向方法的应用,例如小的RNA测序和转录组学,以进行彻底和全面的风险评估。