摘要 自从首次报道将 CRISPR/Cas9 系统用于基因组工程以来,过去十年我们有效地操纵哺乳动物基因组的能力得到了显著提高。然而,未来仍存在重大挑战,阻碍了基于 CRISPR 的基因编辑技术转化为安全有效的治疗方法。由于 PAM 限制,CRISPR 系统的目标范围通常有限,脱靶活性也对治疗应用构成严重风险。此外,第一代基因组编辑器通常通过在目标位点诱导双链断裂 (DSB) 来实现所需的基因组修饰。尽管效率很高,但由于与核酸酶诱导的 DSB 相关的缺点,这种“切割和修复”策略在临床环境中不太受欢迎。在这篇综述中,我们重点介绍了有助于应对这些挑战的最新进展,包括设计和发现具有改进功能的新型 CRISPR/Cas 系统以及开发无 DSB 的基因组编辑器。
SPO11 二聚化控制减数分裂 DNA 双链断裂形成 Cédric Oger 1 和 Corentin Claeys Bouuaert 1,* 1 鲁汶生物分子科学与技术研究所,鲁汶天主教大学,1348 Louvain-La-Neuve,比利时。 * 通讯地址:corentin.claeys@uclouvain.be。SPO11 通过诱导程序性 DNA 双链断裂 (DSB) 来启动减数分裂重组,但这种催化活性从未在体外重建。在这里,我们使用小小鼠 SPO11 报告了一个重现减数分裂 DSB 形成所有特征的生化系统。我们表明,SPO11 在没有任何伴侣的情况下催化断裂形成,并保持与 5 ¢ 断裂链的共价连接。我们发现 SPO11 的靶位选择受 DNA 底物的序列、可弯曲性和拓扑结构的影响,并提供了 SPO11 可以重新修复单链 DNA 断裂的证据。此外,我们表明 SPO11 在溶液中是单体,而切割需要二聚化才能重建两个混合活性位点。SPO11 及其伴侣 TOP6BL 形成 1:1 复合物,该复合物催化 DNA 切割,其活性与单独的 SPO11 相似。然而,该复合物以更高的亲和力结合 DNA 末端,表明在切割后可能发挥作用。我们提出了一个模型,其中体内 DSB 形成所需的 SPO11 的其他伴侣组装生物分子凝聚物,招募 SPO11-TOP6BL,从而实现二聚化和切割。我们的工作确立了 SPO11 二聚化是控制减数分裂 DSB 诱导的基本机制。
摘要 DNA 双链断裂 (DSB) 的修复对于保持基因组完整性至关重要。因此,定义 DSB 修复的潜在机制将增强我们对这些途径中的缺陷如何导致人类疾病的理解,并可能导致发现新的治疗干预方法。在这里,我们在 U2OS 细胞中建立了一组 HaloTagged DNA 损伤反应因子,这使得荧光 HaloTag 配体能够进行浓度依赖性蛋白质标记。在这些修复因子的内源位点处基因组插入 HaloTag 可保持表达水平,蛋白质保持适当的亚细胞定位、形成病灶的能力并在功能上支持 DSB 修复。我们系统地分析了总细胞蛋白质丰度,测量了激光诱导的 DNA 损伤位点的募集动力学,并通过活细胞单分子成像确定了扩散动力学和染色质结合特性。我们的工作表明,Shieldin 复合物(端接的关键因子)并不存在于预组装状态,并且这些因子在 DSB 处的相对积累具有不同的动力学。此外,活细胞单分子成像揭示了 MDC1 和染色质之间的组成性相互作用,该相互作用由其 PST 重复域介导。总之,我们的研究证明了单分子成像的实用性,可以为 DNA 修复提供机制见解,这将成为表征活细胞中 DNA 修复因子的生物物理特性的强大资源。
图 1 DSB 修复途径总览 .DSB 发生后 , Ku70-80 会最先结合上来 , 如果不发生末端切除 , 会继而招募 DNA-PKcs, ligase IV, XRCC4 等 cNHEJ 核心因子介导 cHNEJ 修复途径 .如果末端发生 MRN-CtIP 介导的末端切除 , 则会产生 ssDNA 抑制 cNHEJ 修复途 径 .短程切除和长程切除产生的 ssDNA 可以通过链内退火进行修复 , 分别被称为 alt-EJ 和 SSA.长距离切除产生的 ssDNA 也可以 在 BRCA2-PALB2-BRCA1 复合体的帮助下和 RAD51 形成核蛋白纤维 , 进行同源找寻和连入侵过程 , 从而进入 HR 修复途径 .HR 途径又可以分为 BIR, SDSA 和 DSBR Figure 1 Overview of DSB repair pathways.The broken ends are first recognized and bound by Ku70-80.Without end resection, other cNHEJ core factors, such as DNA-PKcs, ligase IV, XRCC4, would be recruited to DSBs to mediate cNHEJ pathway.When MRN-CtIP-mediated resection occurs, the generated ssDNA will inhibit cNHEJ pathway.ssDNA from short-range and long-range resection can anneal in-strand to resolve the damages, termed Alt-EJ and SSA, respectively.ssDNA from long-range resection can also be bound by RAD51 to form nucleoprotein filament under the help of BRCA2-PALB2-BRCA1 complex.Nucleoprotein filament carry out homologous searching and strand invasion, promoting HR pathway.The HR pathway could be divided into BIR, SDSA and DSBR
备忘录,用于研究和工程主题的国防部长:国防科学委员会的最终报告夏季关于气候变化和全球安全的研究,我很高兴转发2023年国防科学委员会(DSB)夏季关于气候变化和全球安全的最终报告。这项研究研究了确保国防部(DOD)为不断变化的气候的影响做准备的重要考虑因素。该报告提供了一个高级概述,概述气候如何直接或间接影响世界上的地区,从而提出了改善全球安全和解决潜在冲突的新挑战。DSB将其评估,发现和建议集中在多个领域,包括:•改善气候情境意识和决策支持,提高极端环境中的力量•为潜在的军事基础和设施的准备准备•为潜在的军事基础和设施的脆弱性做好准备•增强人道主义援助和疾病的救济能力•预计范围跨越了范围的范围,并在范围内进行稳定的范围,而稳定的稳定性则是稳定的范围。预测所需的功能和改编。DSB认识到整个国防部以及其他机构和组织正在进行的与气候相关的重要努力,并确定了进一步进展的选择。国防部有很多机会与我们的盟友和合作伙伴紧密合作,以建立一种全面和协调的方法,为全世界的气候变化做准备。我完全认可本报告中包含的所有建议,并敦促他们仔细考虑和采用。
1个生物医学科学系Bag-dsb在资金中,Infra2023-dev-01 Elixir Steers; 101131096 -T4主题:应用于生命科学的机器学习领域的圆顶建议的扩展; 1 Fondi Horizon-Infra2023-Eosc-01 Everse的生物医学科学系Bag-DSB; 101129744 -T5主题:Apicuron研究软件的识别机制的实现; 1个数学部门袋“'Tullio Levi -Civita” - 欧盟基金的DM -NextGenerazionau和The Stars@unipd 2023计划,PatchThemaii-基于虚拟化的土地 - 基于任何>
基因组编辑涉及使用定位的核酸酶(例如锌指核酸酶,Talens或CRISPR/CAS9)切割DNA双螺旋,并在基因组DNA中的靶向,特定序列引入双链断裂(DSB)。实际上是一对成熟的分子剪刀。然后,使用两种机制之一,通过细胞中的机械修复DSB。一种方法是非同源末端连接(NHEJ),其中两个破裂的末端彼此并排并粘合在一起。此方法容易出错,并且由于维修过程中不可避免的错误,在目标裂解位点会导致目标切割部位的插入和缺失(Indels)。这些误差会改变核酸酶目标位点,并防止进一步的切割事件,并通常禁用或敲除基因功能。另一种修复机制是使用同源核酸修复模板的同源指导修复(HDR)。修复模板可以设计与DSB两侧匹配的同源性区域之间进行所需的修改。这可用于引入一系列基因组编辑,从点突变到全基因插入。
体细胞中双链断裂 (DSB) 的修复主要通过易出错的非同源末端连接完成,较少通过精确的同源定向修复完成,优先使用姐妹染色单体作为模板。在这里,果蝇系统使用同源染色体的完整序列对 DSB 和单链断裂 (SSB) 进行有效的体细胞修复,我们称这一过程为同源染色体模板修复 (HTR)。出乎意料的是,白色位点的 HTR 介导的等位基因转换对 Cas9 衍生的切口酶 D10A 或 H840A 诱导的 SSB 的响应比对完全活性 Cas9 诱导的 DSB 的响应 (20% 到 30%) 更有效 (40% 到 65%)。 Nickase 和 Cas9 引起的修复表型在发展时间(分别为晚期和早期)和不良诱变事件的产生(罕见和频繁)方面均有所不同。Nickase 介导的 HTR 代表了一种高效且出乎意料的等位基因校正机制,在基因编辑领域具有深远的潜在应用。
摘要:DNA双链断裂(DSB)是DNA损伤的有害形式,必须对其进行牢固地解决以确保基因组稳定性。有缺陷的修复会导致染色体丧失,点突变,杂合性丧失或染色体重排,这可能导致肿瘤发生或细胞死亡。我们通过非同源末端连接和同源指导的修复(HDR)机制成功修复DNA DSB的要求与基因组折叠和动力学有关。关于DSB,局部和全球染色质组成和动力学以及3D基因组组织的发生以及核空间内的打破定位,这影响了修复的过程。粘蛋白复合物越来越多地成为基因组的关键调节剂,影响染色质组成和动力学的影响,以及通过主动环挤出机制折叠染色体和维持姐妹染色质凝聚力的折叠染色体,至关重要的基因组组织。在这里,我们考虑这种复合物现在如何成为DNA损伤响应,影响修复途径选择和效率的关键参与者。