在一项研究发表在美国癌症研究协会 (AACR) 出版的十种期刊中的任何一种之前,它都要接受一项不寻常的额外检查。自 2021 年 1 月以来,AACR 一直在同行评审后对其暂时接受的所有手稿使用人工智能 (AI) 软件。目的是自动提醒编辑注意重复的图像,包括部分图像被旋转、过滤、翻转或拉伸的图像。AACR 是可能成为一种趋势的早期采用者。为了避免发表带有被篡改图像的论文——无论是由于彻头彻尾的欺诈还是不恰当的美化发现的尝试——许多期刊都雇人手动扫描提交的手稿以查找问题,通常使用软件来帮助检查他们发现的内容。但《自然》获悉,在过去的一年里,
自从 Barbara McClintock 博士发现第一个转座子以来,转座因子 (TE) 的普遍性和多样性逐渐被人们认识到。作为基本的遗传成分,TE 不仅通过贡献功能序列(例如,调控元件或 McClintock 博士所说的“控制者”)而且通过改组基因组序列来推动生物体的进化。在后一种方面,TE 介导的基因复制促进了新基因的产生并引起了广泛的兴趣。为了顺应这一领域的发展,我们在此尝试通过关注不同类型的 TE 产生的复制中出现的共同规则来提供 TE 介导的复制的概述。具体而言,尽管不同 TE 的转座机制差异很大,但我们发现各种 TE 介导的复制机制有三个共同特点,包括末端绕行、模板转换和复发性转座。这三个特征导致一个共同的功能结果,即 TE 介导的重复倾向于发生外显子改组和新功能化。因此,突变机制的内在特性限制了这些重复的进化轨迹。我们最后讨论了该领域的未来,包括深入描述 TE 介导的重复的复制机制和功能。版权所有 © 2023,作者。中国科学院遗传与发育生物学研究所和中国遗传学会。由 Elsevier Limited 和科学出版社出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
多个 Pristionchus pacificus 基因组揭示了从头候选基因和重复基因之间不同的进化动态
确定重复的SOX因子功能差异的分子基础,控制斑马鱼Simaran Johal 1,Randa Elsayed 2,Kristen A. Panfilio 1,3,4,Andrew C. Nelson 1* 1* 1.生命科学学院,吉布特山校园,沃里克大学,考文垂,Cv4 7al,英国2。Warwick医学院,Gibbet Hill校园,沃里克大学,考文垂,Cv4 7al,英国3。 霍恩海姆大学生物学研究所分子遗传学系。 30,70599德国斯图加特4。 动物学研究所:发育生物学,科隆大学,苏黎世大学,苏黎世大学47b,50674德国科隆 *通讯作者电子邮件:a.nelson.1@warwick.ac.ac.ac.ac.ac.ac.ac.ac.ac(acn)摘要内科胰腺。 这些器官的放置和图案依赖于左右的组织者 - 斑马鱼中称为库普弗囊泡(KV)。 转录因子Sox32和Sox17是斑马鱼Soxf亚科的成员。 Sox32和Sox17来自Teleost血统中祖先Sox17的重复。 SOX32在早期胚胎中诱导SOX17的表达,是内胚层和KV祖细胞规范所必需的。 斑马鱼Sox17与KV形态发生有关。 在哺乳动物中,Sox17对于内胚层形成至关重要,可以诱导内胚层祖细胞身份。 因此,表型证据表明斑马鱼Sox32和Sox17与哺乳动物Sox17之间的功能相似性。Warwick医学院,Gibbet Hill校园,沃里克大学,考文垂,Cv4 7al,英国3。霍恩海姆大学生物学研究所分子遗传学系。30,70599德国斯图加特4。动物学研究所:发育生物学,科隆大学,苏黎世大学,苏黎世大学47b,50674德国科隆 *通讯作者电子邮件:a.nelson.1@warwick.ac.ac.ac.ac.ac.ac.ac.ac.ac(acn)摘要内科胰腺。这些器官的放置和图案依赖于左右的组织者 - 斑马鱼中称为库普弗囊泡(KV)。转录因子Sox32和Sox17是斑马鱼Soxf亚科的成员。Sox32和Sox17来自Teleost血统中祖先Sox17的重复。SOX32在早期胚胎中诱导SOX17的表达,是内胚层和KV祖细胞规范所必需的。斑马鱼Sox17与KV形态发生有关。在哺乳动物中,Sox17对于内胚层形成至关重要,可以诱导内胚层祖细胞身份。表型证据表明斑马鱼Sox32和Sox17与哺乳动物Sox17之间的功能相似性。我们试图探索斑马鱼早期胚胎中这些蛋白质之间的功能差异和潜在的相似性。我们的结果表明,与Sox32不同,人类Sox17不能在斑马鱼中诱导内胚层规范。此外,使用混合蛋白功能分析,我们表明SOX32内胚层基因调节网络的特异性与其HMG域与旁产皮sox17的进化差异有关。此外,Sox32和Sox17的C末端区域的变化是其在介导差异基因调节程序中的不同目标特异性和差异的基础。最后,我们确定C末端结构域中的特定保守肽对于SOX17在建立正确的器官不对称性中的作用至关重要。总体而言,我们的结果为脊椎动物内胚层发育,左右模式以及SOXF转录因子功能的演变提供了新的见解。
# Compare the first motif with everything and return P-values head ( compare_motifs (motifs, 1 )) #> Warning in compare_motifs(motifs, 1): Some comparisons failed due to low motif #> IC #> DataFrame with 6 rows and 8 columns #> subject subject.i target target.i score logPval #> #> 1 ORA59 1 ERF11 [duplicated #6.. 1371 0.991211 -13.5452 #> 2 ORA59 1 CRF4 [duplicated #566] 1195 0.990756 -13.5247 #> 3 ORA59 1 LOB 1297 0.987357 -13.3725 #> 4 ORA59 1 ERF15 618 0.977213 -12.9254#> 5 ORA59 1 ERF2 [重复#294] 649 0.973871 -12.7804#> 6 ORA59 1 ERF2 [重复#483] 1033 0.973871 -12.78804#> 1.31042E-06 0.00359318#> 2 1.33754E-06 0.00366754#> 3 1.55744E-06 0.00427049#> 4 2.43548e-06 06 06 06 0.00606667809# 0.00772019
基因复制产生新的遗传物质,可以有助于基因调节网络和表型的演变。重复的基因可以对祖先函数和/或新功能性进行下功能化,以实现新功能。我们以前发现在芳基肺化合物的祖先,包括蜘蛛和蝎子在内的谱系中有整个基因组重复(WGD),但不包括螨虫,tick虫和收割机等其他蛛网。许多重复的同源基因(包括两个HOX簇)在蜘蛛中证明了这一WGD。然而,目前尚不清楚哪些同源副校友由WGD与诸如串联杜普尔(Tandem du Plications)等小规模事件相比。理解这是确定WGD对蛛网基因组evo lution的贡献的关键。在这里,我们表征了重复的同源基因在八个染色体级蜘蛛基因组中的分布。我们发现,蜘蛛中大多数重复的同源基因与WGD的起源一致。我们还发现了所有八种物种中的两个保守同源基因簇的副本,包括HOX,NK,HRO,IRX和正弦簇。一致地,我们观察到每个集群的一个副本是根据基因含量和组织而退化的,而另一个群体则更加完整。专注于NK群集,我们发现了与Har Vestman phalangium opilio中的单拷贝直系同源物相比,蜘蛛parasteatoda tepidariorum中重复的NK基因之间调节性亚功能的证据。我们的研究提供了对蜘蛛进化过程中多种模式对同源物基因曲目的相对贡献的新见解和NK基因的功能。
在本文最初发表的版本中,图 4a 中 A549 细胞和图 6b 中 NH 2 -null LAAM TC-CQDs 组显微照片的设置存在错误。原始图片和更正后的图片如下所示。我们还被告知补充信息中的几张图片存在错误。特别是,我们在补充图 20 中意外地使用了几组重复的 RWPE-1、HL-7702、CCC-HPE-2 和 CCC-HIE-2 细胞系图像,在补充图 29 中体内荧光图像下的小鼠图像(一些图像从补充图 56 中重复;在此图中,我们还为 TPTC 组的 0 小时时间点和 TPTC/LAAM TC-CQDs 的 6 小时时间点选择了不正确的图像),在补充图 30 中切除的小鼠器官(一些图像从补充图 38 中重复),以及在补充图 61 中 TPTC/LAAM TC-CQDs 组的心脏和脾脏图像(两张显微照片与盐水组的有重叠)。这些补充图的原始版本和更正版本也在下面重现。所有这些错误都是在从我们使用的核心设施中获取、处理和存储的大量图像数据集中选择代表性图像时发生的。