扩张蛋白是与植物生长和胁迫反应有关的细胞壁修饰蛋白。在这项研究中,我们探索了拟南芥芽中扩张蛋白的差异定位,重点是Expa1,Expa10,Expa14和Expa15,利用PEXPA :: Expa Transce Fransicational Fusion Lines。采用化学诱导系统POP6/LHGR进行EXPA1过表达和高通量自动表型,我们评估了压力条件下的干旱反应和光合效率。我们观察到了扩张蛋白的不同表达模式,Expa1主要位于气孔后卫细胞中,而Expa10和Expa15在表皮和其他组织中显示出强细胞壁(CW)定位。Expa1的过表达导致与CW相关基因表达的明显变化,尤其是在诱导早期,包括其他扩张蛋白和CW-修饰酶的上调。诱导的Expa1线还显示出芽的显着形态变化,包括较小的植物尺寸,延迟的衰老和血管组织的结构改变。此外,Expa1过表达赋予了干旱耐受性,这是通过增强的光合效率(F V /F M)和低稳态的非光化化学淬灭(NPQ)值在干旱应力下证明的。这些发现突出了Expa1在调节植物生长,发育和压力反应中的关键作用,并在提高农作物中的干旱耐受性方面的潜在应用。
癌症免疫疗法在治疗各种恶性肿瘤方面取得了巨大的进步。成功免疫疗法的最大障碍是癌细胞的免疫抑制肿瘤微环境(TME)和低免疫原性。要成功进行免疫疗法,必须将“冷” TME转换为“热”免疫刺激状态,以激活残留的宿主免疫反应。为此,应损坏TME中的免疫抑制平衡,应诱导免疫原性癌细胞死亡以适当刺激杀死肿瘤的免疫细胞。光动力疗法(PDT)是诱导癌细胞免疫原性死亡(ICD)并破坏免疫限制性肿瘤组织的有效方法。PDT会触发链反应,该链反应将使TME“热”并具有ICD诱导的肿瘤抗原呈现给免疫细胞。原则上,PDT和免疫疗法的战略组合将协同作用,以增强许多棘手的肿瘤的治疗结果。采用纳米载体的新技术是开发出来的,以提供光敏剂和免疫治疗剂对TME有效。新一代纳米医学已开发用于PDT免疫疗法,这将加速临床应用。
量子热力学的资源理论一直是一个非常成功的理论,并且在社区中产生了很多后续工作。,它要求在系统,浴室和催化剂上实施能源的统一操作,作为其范式的一部分。到目前为止,这种统一的操作被认为是该理论中的“免费”资源。但是,这只是一个不必要过程的理想化。在这里,我们包括一个额外的辅助控制系统,该系统可以通过打开或关闭的交互来自主实现统一。”但是,由于统一的实施而导致的背部。我们得出了控制装置质量的条件,因此热力学定律不会通过使用良好的量子时钟来改变并证明量子力学定律允许反应足够小,从而可以满足这些条件。我们将非理想的控制纳入资源框架也会引起有趣的前景,在考虑理想化的控制时,这是不存在的。除其他外,第三定律的出现而无需假设光锥。我们的结果和框架将自动量热机器的自动量量子资源理论统一,并为所有量子加工设备与完全自主机统一的所有量子处理设备奠定了基础。
在积聚X射线脉冲星中,中子星通过增生磁盘从伴侣恒星中产生了重要的东西。旋转中子恒星的磁场破坏了磁盘的内边缘,将气体漏斗以流到其表面的极点上。Hercules X-1是距地球约7 kpc的典型持续X射线脉冲星。 它的发射在三个不同的时间尺度上有所不同:中子星每1.2 s旋转一次,每1.7 d每1.7 d会黯然失色,并且该系统的超晶型周期为35 d,自发现以来一直保持稳定。 几行证据指出了这种变异的来源是吸积盘或中子恒星的进动。 尽管在过去的50年中有许多提示,但中子恒星本身的动力尚未得到证实或被驳斥。 X射线极化测量(用成像X射线极化探索器探测其X-1的自旋几何形状)表明,Neutron Star Crust的自由进动在35 d期间设置;这具有重要的含义,即它的外壳在某种程度上不对称,每100万份。Hercules X-1是距地球约7 kpc的典型持续X射线脉冲星。它的发射在三个不同的时间尺度上有所不同:中子星每1.2 s旋转一次,每1.7 d每1.7 d会黯然失色,并且该系统的超晶型周期为35 d,自发现以来一直保持稳定。几行证据指出了这种变异的来源是吸积盘或中子恒星的进动。尽管在过去的50年中有许多提示,但中子恒星本身的动力尚未得到证实或被驳斥。X射线极化测量(用成像X射线极化探索器探测其X-1的自旋几何形状)表明,Neutron Star Crust的自由进动在35 d期间设置;这具有重要的含义,即它的外壳在某种程度上不对称,每100万份。
气候变化以温度和降雨的长期趋势为特征,近年来已经成为一个突出的关注(Seddon等,2016),对森林和草原生态系统的全球碳,水和能量周期产生了重大影响。此外,极端天气事件的频率增加可能会对各种陆地生态系统产生毁灭性后果(IPCC,2023年)。为了进一步研究气候变化对森林和草原生态系统的影响,并支持中国达到其达到其峰值二氧化碳排放和碳中立目标的努力,提出了这一研究主题。该研究主题包括23篇原始研究文章和1篇意见文章,介绍了以下领域的最新进展:(1)森林和草地生态系统响应气候变化的碳,水以及能量循环,以及(2)植被特征和生态系统稳定性的响应和适应性。
脊椎动物的眼睛不断面临着来自水生或空气传播病原体的众多挑战。作为至关重要的第一道防线,眼粘膜 (OM) 保护鸟类和哺乳动物等脊椎动物的视觉器官免受外界威胁。然而,我们对硬骨鱼等早期脊椎动物眼粘膜免疫的了解仍然有限,特别是关于它们对细菌感染的抵抗力。为了深入了解 OM 在硬骨鱼抗菌免疫中的关键作用,我们利用虹鳟鱼 (Oncorhynchus mykiss) 中的柱状黄杆菌建立了细菌感染模型。此处 qPCR 和免疫荧光结果表明柱状黄杆菌可以侵入鳟鱼 OM,表明 OM 可能是细菌的主要目标和屏障。此外,qPCR 证实了鳟鱼 OM 中免疫相关基因( il-6 、 il-8 、 il-11 、 cxcl10 、 nod1 、 il1-b 、 igm 、 igt 等)在 F. columnare 感染后上调,并通过 RNA-seq 进一步证实了这一点。转录组分析的结果表明,细菌感染会触发强烈的免疫反应,包括先天性和适应性免疫相关信号通路,如 Toll 样、NOD 样和 C 型凝集素受体信号通路和 IgA 产生的免疫网络,这强调了 OM 在细菌感染中的免疫作用。有趣的是,感染后观察到与视觉功能相关的基因表达显着降低,表明细菌感染可能影响眼部功能。总的来说,我们的研究结果首次揭示了硬骨鱼类眼部粘膜对细菌感染的强大粘膜免疫反应,为未来研究早期脊椎动物眼部粘膜免疫机制和功能提供了宝贵的见解。
人们对由相对少量相互作用的神经元组成的各种集合和大型神经形态系统进行了研究 [1±6]。在《Physics Uspekhi》中,许多综述介绍了使用非线性物理方法研究大脑和神经集合中的动态过程的相关主题 [7±18]。最近,对工作大脑的认知和功能特性进行建模已经成为神经动力学的前沿 [19±21]。尤其是,人们对这一主题越来越感兴趣,这与创建能够重现自然智能关键特性的人工智能系统有关 [22, 23]。为了解决这类问题,有必要建立新的动态模型,这些模型首先可以重现复杂的层次组织,其次可以重现神经元结构的可塑性,因为它们的组成以及结构之间和结构内的连接会根据信息输入的存在与否而变化。迄今为止,已经开发出两种动态建模方法 [24, 25]。其中一种方法是所谓的自上而下的方法,模型采用大脑活动模式——模拟大脑高级过程的积分变量 [20]。另一种方法自下而上,对于可以重现大脑高级功能的神经结构模型,首先,基于对神经元和结构之间连接的真实描述,建立单个神经元的模型 [25, 26]。显然,这两种方法的生物学相关模型都应该基于实验数据。在神经生理学家对大脑进行的实验研究中,神经元的活动是在受试者休息时或受试者执行某项任务时记录的。基于实验数据的模型可以通过两种方式开发。第一种是数据驱动建模,即重建一个动态系统,该系统产生的时间序列在数量上接近实验记录的时间序列。第二种方式是基于所考虑的行为问题建模,即
联合药物疗法是成功治疗多种疾病的关键,在这些疾病中单一疗法效果不够好或出现了耐药性。因此,开发新的药物组合是主要关注点。固定剂量组合也是如此,近年来批准的固定剂量组合有所增加。开发固定剂量组合通常需要进行大规模析因设计研究以验证组合的疗效。随着对药物个性化的更多关注,需要为患者提供几种剂量水平的固定剂量组合。对于析因设计研究,这将导致非常昂贵的临床试验。为了降低开发成本并指导药物开发,必须验证现有工具并开发新工具。然而,用于分析固定剂量组合的此类基于模型的工具还处于起步阶段。
耐粘蛋白是在动物中发现的突出的抗病毒蛋白。耐蛋白的主要功能是生产3'-deoxy -3',4' - 二维德罗 - 酪氨酸三磷酸(DDHCTP),这是一种参与病毒RNA合成的抑制性核苷酸。哺乳动物模型中的研究表明,DDHCTP会干扰代谢蛋白。但是,该假设尚未在Telest中进行检验。在这项研究中,测试了耐毒素在调节病毒出血性败血病毒(VHSV)感染中的代谢改变中的作用。被VHSV感染时,viperin - / - 鱼的死亡率较高。vhsv拷贝数和NP基因的表达在耐蛋白 - / - 芬中显着增加。代谢基因分析显示,苏打,HIF1A,FASN和ACC表达的显着差异,表明它们对代谢的影响。在VHSV感染期间,斑马鱼幼虫中的胆固醇分析表明,胆固醇的产生显着上调,没有耐耐蛋白。对ZF4细胞的体外分析表明,脂质产生的降低显着降低,并且具有耐毒素过表达的活性氧(ROS)产生的显着上调。中性粒细胞和巨噬细胞的募集显着调节。因此,我们证明了耐蛋白在干扰VHSV感染过程中的代谢改变中起作用。
摘要:对小规模系统的热力学的最新理解已使对固定输入状态实施量子过程的热力学要求的表征。在这里,我们将这些结果扩展到构建给定过程的最佳通用实现,即即使在许多独立且相同分布(I.I.D.)重复该过程。我们发现,这种实用的最佳工作成本率是由过程的热力学能力给出的,该过程的热力学能力是单字母和添加剂定义为输入和输出输出之间热状态的相对熵的最大差异。除了是量子通道的反向香农定理的热力学类似物之外,我们的结果还引入了量子典型性的新概念,并提出了凸出方法的热力学应用。