本作品采用知识共享署名4.0国际许可协议提供。使用本作品即表示您同意受本许可协议条款的约束 ( https://creativecommons.org/licenses/by/4.0/ )。 署名 – 您必须引用本作品。 翻译 – 您必须引用原作品、标明对原文的改动并添加以下文字:如原作品与译文有任何出入,仅以原作品文本为准。 改编 – 您必须引用原作品并添加以下文字:这是对经合组织和美洲开发银行原作的改编。本改编作品中表达的观点和采用的论点不应被报道为代表经合组织或其成员国或美洲开发银行、其董事会或他们所代表的国家的官方观点。 第三方材料 – 本许可协议不适用于作品中的第三方材料。如果使用此类材料,您有责任获得第三方许可并承担任何侵权索赔。未经明确许可,您不得使用 OECD 或 IDB 各自的徽标、视觉标识或封面图片,也不得暗示 OECD 或 IDB 认可您使用该作品。根据本许可产生的任何争议应根据常设仲裁法院 (PCA) 2012 年仲裁规则通过仲裁解决。仲裁地点为巴黎(法国)。仲裁员人数为一人。
自旋轨道扭矩磁阻随机存取存储器 (SOT-MRAM) 器件由于其非易失性、低功耗、高切换速度和耐久性而成为传统存储器的一种颇具吸引力的替代品 [1]。这些器件由磁隧道结 (MTJ) 和 SOT 重金属 (HM) 层组成。在 HM 层上施加电流会产生作用于 MTJ 中铁磁 (FM) 自由层 (FL) 的体自旋扭矩和界面自旋扭矩,这种扭矩源于 HM 层中存在的强自旋轨道耦合,从而可以操纵 FL 磁化。SOT 的对称性为设计具有垂直磁化方向的 SOT-MRAM 单元带来了挑战,以实现适合存储器应用的密度。已经提出并展示了几种解决方案,其中一些需要外部磁场、额外的对称性破坏层或 SOT 与自旋转移扭矩 (STT) 的组合 [1,2]。为了克服工程挑战并加速 SOT-MRAM 设备的开发和采用,需要能够快速准确地探索这些设备设计空间的软件。
AJAIM(抗干扰天线集成模块)是一款符合军用标准的双输入四输出抗干扰天线系统 (AJAS) 和固定辐射模式天线 (FRPA) 集成模块。该模块允许在 AJ 和 FRPA 之间切换对保证定位、导航和授时 (APNT) 系统的 RF 输入。AJAIM 还可以根据所连接的 APNT 系统的需求将车辆电池电源切换到 AJAS,从而基于仅使用 FPRA 输入创建低功耗模式。
我们知道标准化——即技术的统一化、简化和一致性——总是伴随着新技术系统的安装。在以标准化机器设计为基础的“美国制造体系”开始时,这种标准化是存在的;在以电力可用性为基础的现代技术体系安装过程中,这种标准化也是存在的;而今天,随着新信息技术的生产和传播,标准化程度越来越高,这种标准化仍然适用。强大的标准化几乎肯定代表着技术体系的变化。反思这一悖论是件有趣的事情,它是由生产、交换和消费日益标准化的性质与创新、学习和变革占主导地位的经济的出现之间的巧合而产生的。如何解释创新所具有的自由、创造性和动态性,以及标准化所具有的稳定、秩序和常规性这两个看似矛盾的逻辑的并存?本文首先要说明的是,标准化和创新的并存并不矛盾。事实上,快速变化的经济更需要标准和规范。然后,我们将很快提出“快速变化”的概念,以解释新的经济模式,最后描述标准化和创新互补性的一些组成部分。
热处理和淬火是一项复杂的工作。零件的配置是无穷无尽的,可用于热处理的炉子类型也是如此(图 1)。仅淬火过程中的众多变量就决定了零件满足变形要求的能力(图 2)。热处理是一个持续平衡的过程。平衡材料实现性能的能力,同时控制变形非常重要。由于热处理过程的复杂性,很难理解流体流动和零件对零件变形和性能的相互作用。通常,只有通过经验才能获得理解,而经验来自于犯错并从错误中吸取教训。然而,劳动力正在老龄化,对“反复试验”的容忍度较低。重点在于“第一次就把事情做好”。不幸的是,很少有设计规则规定零件在特定熔炉中的放置方式。
早期生活压力 (ELS) 和重度抑郁症 (MDD) 具有共同的神经网络异常。然而,尚不清楚 ELS 和 MDD 如何单独和/或共同与大脑网络相关,以及患有和不患有 ELS 的抑郁症患者之间是否存在神经差异。此外,先前的研究评估了静态与动态网络属性,这是一个关键的空白,因为大脑网络会随着时间的推移显示协调活动的变化。71 名未接受药物治疗的女性,有或没有童年性虐待 (CSA) 史和/或 MDD,完成了静息状态扫描和压力任务,其中收集了皮质醇和情感评分。检查了重复的功能网络共激活模式 (CAP),并计算了 CAP 中的时间(每个 CAP 表达的次数)和转换频率(不同 CAP 之间的转换)。检查了 MDD 和 CSA 对 CAP 指标的影响,并将 CAP 指标与抑郁和压力相关变量相关联。结果表明,MDD 与 CAP 指标相关,但 CSA 与 CAP 指标无关。具体而言,与 HC(N = 36)相比,患有 MDD(N = 35)的个体在后默认模式 (DMN)-额顶网络 (FPN) CAP 中花费的时间更多,并且在后 DMN-FPN 和原型 DMN CAP 之间转换的频率更高。在各个组中,在后 DMN-FPN CAP 中花费的时间越多,DMN-FPN 和原型 DMN CAP 转换频率越高,反刍的频率就越高。DMN 和 FPN 之间的不平衡似乎是 MDD 的核心,可能导致与 MDD 相关的认知功能障碍,包括反刍。出乎意料的是,CSA 并没有调节此类功能障碍,这一发现需要在未来样本量更大的研究中进行复制。
超材料是人造结构,表现出可以在土木工程应用中利用的波浪控制特性。中,局部共振的超材料能够在波长上控制和操纵波长比单位细胞大小的尺寸几倍,因此对于低频振动抑制很有用。本文介绍了0.4 m厚的基于超材料的面板的设计,安装和验证,以缓解铁路引起的振动。屏障包括由四个由外部细长钢钢筋连接在一起的混凝土金字塔制成的局部谐振单元。单位电池在数值和实验上都是从动态的角度来表征的,然后在Elze(德国)的火车站的障碍物上进行全尺度现场测试。此测试验证了基于超材料的面板在与数值和实验室测试的良好一致的谐振频率下提供低频缓解10 dB的有效性。
研究人员研究了复杂的,不可预测的动态系统,其特征是复杂的细节和对初始条件的敏感性,这是通过对动态系统中类似特征的探索来证明的[1]。这种系统的显着特征是它们混乱的性质。混乱是指动态系统理论中的一种现象,而系统在有限的时间内表现出混乱的行为,然后稳定在周期性或准周期状态。这个概念已在各种领域进行了广泛的研究,包括物理,数学,工程和生物学。在1983年,Celso Grebogi,Edward Ott和James Yorke发表了一篇关于混乱的开创性论文,该论文证明了Lorenz系统中混乱的吸引者的有限寿命[2,3]。尽管洛伦兹系统具有固有的不可预测性,但作者证明可以通过分析不稳定的周期性轨道的动力学来预测混乱的行为。这项开创性的工作介绍了不稳定的周期性轨道的概念,并突出了它们在动态系统中混乱的出现中的重要性。Grebogi,Ott和Yorke激发了研究人员继续研究不同系统中的短暂性混乱,包括机械,电子和生物系统。这个领域在使用瞬态混乱来增强系统对小变化的敏感性方面取得了重大进展,该更改应用于加密和安全通信等各种应用程序。研究人员最近开始探索复杂网络中混乱与同步之间的关系。这项研究发现混乱可以帮助促进耦合振荡器网络中的同步,该网络具有潜在的应用领域的应用,例如电力系统和通信网络。