基因组编辑工具的出现,例如CRISPR-CAS9,已使遗传和基于细胞的疗法的发展用于治疗遗传疾病(Porteus,2019年)。进行了多项临床试验,以测试自体基因编辑的造血干细胞(HSC)的安全性治疗遗传疾病(NCT03655678,NCT04208529,NCT0485576肝脏的编辑以治疗经性淀粉样变性(ATTR,NCT04601051)或遗传血管性水肿(HAE,NCT05120830)(Frangoul等,2021; Gillmore等,2021)。值得注意的是,目前大多数开放临床试验都集中在基因敲除(KO)而不是同源性基因修复上。KO不需要同时递送同源序列来纠正引起疾病的突变,因此通常与较高的成功编辑效率有关。由于我们已经广泛的知识和骨髓中HSC移植的既定程序(Consiglieri等,2022)以及脂质纳米颗粒技术的可用性,因此这些示例的可行性得到了加速,并有效地靶向了肝脏(QIU等,20221)。Unfortunately, such techniques and technologies are not available for targeting the lung speci fi cally, therefore, expanding the use of genome editing tools to treat other inherited disorders, such as cystic fi brosis (CF), primary ciliary dyskinesia (PCD) and surfactant protein disorders impacting the lungs is of signi fi cant interest.图1总结了这些研究的发现。CF是由CF跨膜电导调节剂(CFTR)基因突变引起的。在这些情况下,体内基因组编辑受到挑战的限制,其中1)将基因组编辑试剂递送到所需的细胞中,基因校正所需的同源重组需要CRISPR-CAS9和CRISPR-CAS9和同源DNA才能将其传递到同一细胞中,以及2)对理想细胞/干细胞的长期疾病矫正的理解。EX-VIVO基因编辑可能是一种更有效的方法,但是基因编辑的细胞和调理方案的递送,使上皮接受细胞的植入而没有损害患者的肺功能,但仍表现出重要的挑战。在本研究主题中,我们提供了四篇文章,描述了产生自体基因校正的气道基底细胞(BCS),移植气道BC的努力,并讨论了扩展这些工具以治疗影响肺泡的表面活性剂蛋白质疾病的潜力。一个主要挑战是气道干细胞的有效基因校正,同时保持其再生潜力。许多基因校正工作都集中在CF上,因为它是影响肺部最有特征的遗传疾病之一(Suzuki等,2020; Vaidyanathan等,2020)。在CFTR中已经描述了2000多种不同的突变,因此,人们对替换整个CFTR编码序列的兴趣引起了极大的兴趣,以开发适用于所有CF患者的治疗。但是,CFTR编码序列(4,500 bp)接近常用腺相关病毒的包装极限
流感疫苗接种可以预防流感症状的出现或严重化,还可以预防与流感病毒有关的并发症、住院和死亡。特别是,如上所示的高风险人群、有高风险因素的家庭成员和医护人员被认为更为有益。在日本,只有注射型疫苗被批准,而鼻喷雾剂尚未被批准。一般来说,副作用较轻。注射部位可能会变红、肿胀和/或变硬、感觉发热、疼痛、麻木或起水泡,但这些症状通常会在 2-3 天内消失。您还可能会出现发烧、发冷、头痛、嗜睡、暂时失去意识、头晕、淋巴结肿大、咳嗽、呕吐或恶心、腹泻、关节痛、肌肉痛和/或肌肉无力。对疫苗的过度敏感可能导致皮疹、荨麻疹、湿疹、红斑和/或瘙痒,以及蜂窝织炎、面瘫和其他形式的瘫痪、周围神经病变、昏厥、血管迷走神经反应和/或葡萄膜炎。以下副作用极为罕见,但已知会发生:(1)休克、过敏反应(荨麻疹、呼吸困难、血管性水肿等)、(2)急性播散性脑脊髓炎(接种后数天至两周内出现发烧、头痛、抽搐、运动障碍、意识障碍等)、(3)脑炎·脑病、脊髓炎、视神经炎、(4)格林-巴利综合征(双手双脚麻木、行走障碍等)、(5)抽搐(包括热性惊厥)、(6)肝功能障碍、黄疸、(7)哮喘发作、(8)血小板减少性紫癜、血小板减少、(9)血管炎(IgA血管炎、嗜酸性多血管炎肉芽肿、白细胞破碎性血管炎等)、(10)间质性肺炎、(11)皮肤黏膜眼综合征(Stevens-Johnson综合征)、急性全身性发疹性脓疱病、(12)肾病综合征。如果您的健康状况恶化(需要住院治疗的任何疾病或伤害),您或您的家人可以根据《医药品和医疗器械管理局法》获得救济服务。(电话:0120-149-931 URL:https://www.pmda.go.jp)
简介:神经系统疾病是指影响大脑、脊髓和人体其他神经(神经元)的疾病。涉及中枢神经系统 (CNS) 和周围神经系统 (PNS) 的脑部疾病以及脑癌是一些最常见、最致命且治疗不足的疾病。每年因 CNS 相关问题导致的 680 万死亡病例中,超过 100 万人是由神经退行性疾病引起的,包括胶质母细胞瘤 (GBM)、帕金森病 (PD) 和阿尔茨海默病 (AD)。已经开发了几种药物来解决治疗 CNS 疾病时与毒性、特异性和递送相关的问题。然而,治疗药物很难穿过血脑屏障 (BBB) 等屏障,这会降低治疗效果。此外,一些治疗剂的水溶性差、半衰期短、生物利用度低(需要频繁高剂量给药)以及水溶性差(可能导致多种严重副作用,如运动障碍、口腔炎、睡眠障碍、焦虑和抑郁)限制了它们在治疗中枢神经系统疾病中的应用。这些问题凸显了精准药物输送的必要性,例如使用聚多巴胺纳米颗粒 (PN) 作为模型,由于中枢神经系统中存在聚多巴胺受体,可以在细胞水平上改变或操纵各种过程,以实现所需的属性。这些纳米颗粒是药物输送和其他方法的有效替代品,因为它们具有纳米尺寸,可以穿过血脑屏障。鉴于它们的生物相容性、高稳定性、表面改性和可调节的靶向功效,它们可用于运输生物活性化合物,尤其是穿过血脑屏障。它们有可能成为一种向中枢神经系统输送药物的有吸引力的方法。人工智能 (AI) 已成为精准医疗发展的关键技术。这是因为 AI 可以分析和解释生物数据并实现智能活动的自动化。尽管 AI 已用于药物输送,但几乎没有证据表明
摘要目的:标准化基于激素的种子涂料制剂的剂量,以增强香菜种子的发芽和幼苗生长。研究设计:完全随机的设计。研究地点和持续时间:印度哥印拜陀泰米尔纳德邦农业大学种子科学技术系。方法论:香菜种子用不同浓度的基于激素的种子涂料聚合物涂覆,并以四种复制的滚动毛巾法进行了发芽研究。结果:基于激素的种子涂料配方的发芽率%(69%),根长度(16.75厘米),芽长(7.9厘米),干物质产量(0.058 g/10幼苗),活力指数I(1706)和II(1706)和II(3.9)和10g Polymer/kg polymer/kg polymer/kg of Seed exeed of Edeepy of Seedeed of Seed和290ml and 290ml。结论:用10克激素的种子涂料制剂溶解在290 mL水中的种子涂层增强了种子发芽和幼苗生长关键词:[Coriandrum sativum,种子涂料,剂量,剂量,发芽,活力] 1。引言Coriandrum sativum属于家庭apiaceae。它通常被称为香菜,也是印度最重要的香料作物之一。它的叶子用于烹饪目的[1]。它是在全球培养的,用于种子,叶子用作种子被用作香味果实和调味剂[2]。香菜具有广泛的药用特性,包括催眠,抗焦虑,抗惊厥作用,安替尼德剂。它还可以增强记忆力,进展,口头运动障碍,并提供抗菌,神经保护性,抗真菌和驱虫剂益处。此外,香菜表现出杀虫剂,抗氧化剂,抗炎,降低性,心血管,抗糖尿病和镇痛特性[3]。种子的增强是指收获后治疗,这对于播种时的发芽改善,幼苗的生长和缓解种子的递送至关重要[4]。种子涂层被认为是通过增强种子的生理和物理品质来促进可持续农业的有效方法。此过程有助于提高种植效率,提高生长参数,并减轻非生物胁迫和生物应力[5]。
1。简介PTC Therapeutics,Inc。提交了生物制品许可申请(BLA),STN 125722,用于Eladocagene Exuparvovec-Tneq的许可,并以Kebilidi的专有名称。kebilidi是一种基于腺相关的病毒(AAV)载体的基因疗法,用于治疗成人和小儿芳香族L-氨基酸脱羧酶(AADC)缺乏症。kebilidi旨在在转导细胞中表达功能性AADC,以增加多巴胺合成。在单个神经外科手术过程中,建议通过4次输注到大脑的壳核(2到前壳壳中2,在后壳壳中为2个)。kebilidi是使用由FDA授权用于核内输注的Smart Flow Neuro套管管理的。本文档总结了加速批准Kebilidi的基础。与21 USC 355一致,kebilidi对AADC缺乏症患者有效性的有效性是基于单个适当且控制良好的研究,并进行了确认的证据。具体而言,单臂关键临床研究(n = 13)和外部控制自然历史同类群体包括适当且控制良好的研究。kebilidi的安全性和功效基于对临床试验中AADC缺乏症的严重表型组成的人群的分析(1名儿童退出研究)。在这项研究中,使用SmartFlow Neuro套管管理Kebilidi。该中间端点被认为可以合理地预测临床益处。主要疗效结果是使用Peabody发育量表(PDMS-2)评估的48周后的运动里程碑成就。审查团队建议基于在第48周的运动里程碑成就的中间临床终点,与未经治疗的自然历史群体相比,基于运动里程碑成就的中间临床终点加速批准。在治疗后实现新的运动里程碑方面已证明了Kebilidi的有效性,这与未经处理的自然历史群体相比是出乎意料的。其他证据包括作用机理和药效学数据,表明脑脊液(CSF)同型甲基酸(HVA)的治疗增加是多巴胺和pepamen特异性18 F-DOPA摄取的下游代谢产物,反映了AADC活性的增加。KEBILIDI的主要风险包括程序相关并发症和运动障碍,可以分别通过后手术监测和多巴胺拮抗剂的使用来缓解。在没有FDA批准的疗法的AADC缺乏症的严重表现的背景下,可以接受Kebilidi的风险。总体而言,福利风险评估在被起诉人群中是有利的,并且批准将满足未满足的医疗需求。在一项验证性研究中,持续批准了这种迹象,这取决于对长期临床益处的验证。审核团队建议加速对BLA的批准,并获得加速批准后市场要求(PMR)和CMC的售后承诺(PMCS)(PMCS),该承诺(PMCS)在本文档的第11.C节中列出。
邀请演讲2024在心理健康方面不断发展的范式:迷幻和氯胺酮,南加州Kaiser Permanente 2024年2024年精神病学研讨会,2024年3月8日,2024年,加利福尼亚州阿纳海姆,CA 2024在精神病学领域导航新的边界:大型酮和心理的前景和复杂性,促进了酮类和精神病。 2024年,洛杉矶,加利福尼亚州2023年迷幻医学:潜力,机遇,挑战,UCLA健康运营MEND,顾问委员会会议,2023年11月11日,纽约市,纽约市,2023年,现代医学对迷幻的重新发现:历史上下文,治疗背景,治疗潜力,监管含义和法规含义,UCLA Health System,UCLA Health Systems,33 33 33,los 33,lose nekess in Nevelsive of Neptial of Neption,lose sempect 33迷幻研究和监管问题的临床试验设计,全国退伍军人研究与教育基金会,弗吉尼亚州研究周2023年第二年年度:迷幻对话,2023年5月18日。2023洛杉矶心理健康部氯胺酮和埃斯凯胺的证据和临床考虑因素,季度会议CME演示,2023年3月2日,加利福尼亚州洛杉矶,2023年,PTSD噩梦,大洛杉矶,弗吉尼亚州大洛杉矶,弗吉尼亚州大洛杉矶,精神健康俱乐部,弗吉尼亚州,弗吉尼亚州,弗吉尼亚州,弗吉尼亚州,弗吉尼亚州,精神健康期刊,2023年2月13日,洛斯·洛斯·安西斯,usemes,usemes,usemes,usemes,usemes,usemes,los los insect usect in los nement,los los incter in。 ,2022年,洛杉矶,加利福尼亚州2022迷幻辅助疗法,弗吉尼亚州大洛杉矶,弗吉尼亚州弗吉尼亚州弗吉尼亚州大桥研究大圆环,2022年6月15日,洛杉矶,加利福尼亚州2022年,探索迷幻和无疾病,以治疗精神病学治疗精神病学障碍,《科学,工程学》,《医学》和《医学》。小组成员,2022年3月29日至30日。2021,精神分裂症,精神病学盛大的理解和治疗,2021年7月16日,Kaiser Permonente Oakland,CA 2021,有关精神病学新治疗的最新信息,精神病学宫殿,2月19日,2021年2月19日,2021年,2020年,Kaiser Permanente Oakland,CASERENT GRONDER CARIDE CRIDEN CARIDEN CORIDER CORIDER CORIDER CORIDER,播出了培训,阳光普照,阳光普照,阳光普照,州立健康科学大学2019年2019年针对迟发性运动障碍的新疗法,2019年6月11日,加州大学洛杉矶分校SEMEL神经科学与人类行为研究所2017年军事文化能力14年度综合护理会议,加利福尼亚州环球城,2017年,2017年,2017年神经性神经基质,听觉神经性社会的神经性,刺激性刺激72 nd nd dranscration of Sentrific of Scientific transcrant and Saniagial of Stripicatial,CA 2016临床
The main instrument for analyzing intensity of symptoms in patients with PD is UPDRS.该量表已通过证据基于证据的医学研究[156]验证,与其他较不具体和全球尺度[157],[158]或专门针对QOL的量表相比,被视为参考标准(例如,帕克森氏病问卷[PDQ-39])。[8,49,71,80,107,112,115,159-170]在刺激性状态/术前药物治疗状态下,手术后的绝对UPDRS-II(日常生活)和UPDRS-III(运动活动)和UPDRS-III(运动的活动)的估计减少估计减少。[9,49,71]神经刺激导致与PDQ-39和UPDRS-III中单独的药物相比,神经刺激的改善明显更大。平均UPDRS-III分数在药物状态下提高了41%,在药物状态下提高了23%。[49]与基线值相比,UPDRS-III的STN-DBS相关改善随时间稳定,分别为1和5年,分别为66%和54%。在随访期为2到4年不等的其他研究中,报告了43%至57%的改善。[79,80,165,171-173]刚性和震颤的改善为70%至75%,而对于Akinesia来说,改善为50%。stn-dbs对外周期肌张力障碍有直接影响,术前的71%和只有19%和33%的患者在1和5年中观察到。姿势稳定性和步态也有所改善,但语音仅在第一年就有改善,然后在5年时逐渐恢复到基线。UPDRS-II的进步类似,但随着时间的流逝而发生严重恶化。多巴胺能药物的平均术后减少为50%[49]至56%。[129]结果,左旋多巴引起的运动障碍,随之而来的残疾和持续时间分别降低了69%,58%和71%,对质量质量有重大影响。[49],[52]这一发现主要反映了长期刺激诱导的神经元可塑性和左旋多巴的脱敏。[174-176]这是通过与左旋多巴搏动性给药相关的诱导运动障碍的机制来解释的。[53]如前所述,通过STN刺激的有益作用减少或停止了这些药物不良反应,从而恢复了纹状体多巴胺能受体的更正常的药代动力学方案。术后运动症状适中[112],[163]或不通过STN-DBS改善[8]。 此外,这些UPDRS-III数据忽略了改善的时间维度,因为在药物摄入量后的波动益处被稳定的改善所取代,而稳定的改善反映了“ ON”时间的增加约47%至71%。 [9,49,52,71,112,160,166] STN-DBS [8,9,112]通常比其他帕金森氏症迹象更少改善。 低音症可能会改善,或者由于电流扩散到皮质骨纤维而可能会加重构音障碍。 [177]因此,患者的满意度,尤其是关于低音症和与家人交流的能力,可以在手术后下降。 据报道,据报道,睡眠结构[178]和质量[179]的改善,总睡眠时间增加(高达47%),从而间接地导致了夜间的智慧和清晨的肌张力障碍。 [178] STN刺激也可以通过减少逼尿肌超反射率来有效地改善空隙控制。术后运动症状适中[112],[163]或不通过STN-DBS改善[8]。此外,这些UPDRS-III数据忽略了改善的时间维度,因为在药物摄入量后的波动益处被稳定的改善所取代,而稳定的改善反映了“ ON”时间的增加约47%至71%。[9,49,52,71,112,160,166] STN-DBS [8,9,112]通常比其他帕金森氏症迹象更少改善。低音症可能会改善,或者由于电流扩散到皮质骨纤维而可能会加重构音障碍。[177]因此,患者的满意度,尤其是关于低音症和与家人交流的能力,可以在手术后下降。据报道,据报道,睡眠结构[178]和质量[179]的改善,总睡眠时间增加(高达47%),从而间接地导致了夜间的智慧和清晨的肌张力障碍。[178] STN刺激也可以通过减少逼尿肌超反射率来有效地改善空隙控制。[180],[181]
摘要帕金森氏病(DP)被认为是老年人中第二大普遍的神经退行性病理学,基本上影响了黑神经系统物质,其病理生理学被认为是一种慢性和进行性疾病,这导致基本神庙中多巴胺神经元的进行性死亡。金标准治疗仍然是用多巴胺的直接前体(左旋多巴药物)进行的,但是,这种物质会带来几种不良反应,例如运动障碍和慢性疼痛,从这个意义上讲,与Canabiol使用有关辅助治疗的研究是有希望的。这是一项描述性和解释性的书目审查研究,其中收集的数据来自Scieelo(Scieelific Electronic Library Online),LILACS(拉丁美洲和加勒比健康科学),BVS(健康部的虚拟图书馆)和Google Slalar和Google Slalar。它的目的是将大麻二酚用于治疗帕金森氏病的科学证据。尽管在过去的十年中,将大麻素用于药用目的已扩大,但其在帕金森氏病中的应用仍然缺乏证据和更强大的研究。其在患有PD患者的慢性疼痛管理中的应用是有希望的,但是证据仍然很少。关键词:帕金森氏病;大麻素;大麻二醇; THC。它的目的是针对帕金森氏病治疗大麻二酚的科学证据。尽管使用摘要帕金森氏病(PD)被认为是老年人神经退行性顺序的第二大流行病理学,它基本上影响了中枢神经系统的本质nigra,它的特征是由于其病理生理学而导致的慢性和渐进疾病,这导致了基地神经胆汁中多巴胺能神经元的渐进死亡。即使在今天,黄金标准治疗也是通过多巴胺的直接前体(药物左旋多巴的直接前体进行),但是,该物质会带来几种不良反应,例如发病障碍和慢性疼痛,从这种意义上讲,有关大麻毒素作为辅助治疗的研究证明是有希望的。这是一项书目审查研究,具有描述性和解释性的特征,其中收集的数据来自Scieelo(Scieelo(Scientific Electronic Electronic Library Online)),淡紫色(拉丁美洲和加勒比海科学文献中的科学电子图书馆),BVSMS(BVSMS)(BVSMS(BVSMS)(健康库)和Google Scholar。
摘要帕金森氏病的病因未知,其特征是体征和症状,例如僵硬,肌动脉症,胸肌,震颤,姿势不稳定等。需要在疾病管理方面进行更有效的演变,鼓励对该项目进行阐述,该项目通过文献综述旨在对近年来对帕金森氏病的治疗进行更深入的深入研究深度脑刺激(DBS)和程序演变。通过该项目,分析了可能提高患者质量和预期寿命的疾病,症状和可用治疗方法以及有前途的治疗方法,旨在减少可能的后遗症和非药物治疗的早期发作。重点介绍了近年来最有效的手术程序,深度脑刺激(DBS)获得了更好的结果。方法涉及搜索以英语和葡萄牙语发表的系统修订和荟萃分析,在PubMed,Lilacs,Scielo和Google学术数据库中搜索解决该主题的学术数据库。此外,在相同基础上的一般搜索中找到的工作与相同的关键字一起使用,但可以解决其在标题和摘要中的使用。得出的结论是,DBS是一种有益的治疗方法,可以显着改善帕金森氏症患者的生活质量。但是,当药物治疗变得无效并开始造成的弊大于患者时,最终将使用它。关键字:帕金森氏症;运动障碍;治疗;病理。摘要帕金森氏病具有未知的病因,其特征是符号和症状,例如刚度,敏锐性,心肌,颤音,震颤,姿势不稳定等。需要进行更有效的疾病管理发展发展,该项目旨在通过文献综述,以进行更深入的大脑刺激(DBS)(DBS)以及近年来治疗帕金森氏病的程序的进化。通过疾病,症状,可用治疗和预期的治疗方法,该疾病的治疗可能会构成良好的疾病。后遗症和非药物治疗的早期开始。将重点放在近年来最有效的外科手术程序上,深度脑刺激(DBS)取得了更好的结果。搜索以英语和葡萄牙语发表的系统评价和荟萃分析的方法,在数据库PubMed,Lilacs,Scielo和Google Scholar中,涉及该主题。此外,还包括在相同数据库中的一般搜索中发现的研究,但还包括关注它们在标题和摘要中的使用。得出的结论是,DBS是一种有益的治疗方法,可以显着改善帕金森氏症患者的生活质量。但是,当药物治疗变得无效并开始对患者带来更多弊大于利时,它被用作最后的手段。关键字:帕金森氏症;运动障碍;治疗;病理。
在患有帕金森氏病的受试者中表明宿主疾病传播。自然医学,14(5),501–503。33。Kordower,J。H.,Chu,Y.,Hauser,R.A.,Freeman,T。B.,&Olanow,C。W.(2008)。 在帕金森氏病长期胚胎ni骨移植中的Lewy身体样病理学。 自然医学,14(5),504-506。 34。 Steiner,J。 A.,Quansah,E。和Brundin,P。(2018)。 α-突触核蛋白作为prion样蛋白的概念:十年后。 细胞和组织研究,373(1),161–173。 35。 Olanow,C。W.,Kordower,J。H.,Lang,A。E.和Obeso,J。 A. (2009)。 帕金森氏病的多巴胺能移植:当前的状态和未来前景。 神经病学年鉴,66(5),591–596。 36。 Galpern,W。R.,Corrigan-Curay,J.,Lang,A.E.,Kahn,J.,Tagle,D.,Barker,R.A. (2012)。 临床试验中的假神经外科手术疾病的神经外科疾病:科学和道德考虑。 柳叶刀神经病学,11(7),643–650。 37。 Smith,R.,Wu,K.,Hart,T.,Loane,C.,Brooks,D.J.,Björklund,A.,Odin,P.,Piccini,P。,&Politis,M。(2015年)。 苍白的血清素能功能在帕金森氏病障碍症中的作用:一项正电子发射断层扫描研究。 衰老的神经生物学,36(4),1736– 1742。 38。 胎儿细胞移植后的运动障碍:帕金森氏症:一项宠物研究。 39。Kordower,J。H.,Chu,Y.,Hauser,R.A.,Freeman,T。B.,&Olanow,C。W.(2008)。在帕金森氏病长期胚胎ni骨移植中的Lewy身体样病理学。自然医学,14(5),504-506。34。Steiner,J。A.,Quansah,E。和Brundin,P。(2018)。α-突触核蛋白作为prion样蛋白的概念:十年后。细胞和组织研究,373(1),161–173。35。Olanow,C。W.,Kordower,J。H.,Lang,A。E.和Obeso,J。 A. (2009)。 帕金森氏病的多巴胺能移植:当前的状态和未来前景。 神经病学年鉴,66(5),591–596。 36。 Galpern,W。R.,Corrigan-Curay,J.,Lang,A.E.,Kahn,J.,Tagle,D.,Barker,R.A. (2012)。 临床试验中的假神经外科手术疾病的神经外科疾病:科学和道德考虑。 柳叶刀神经病学,11(7),643–650。 37。 Smith,R.,Wu,K.,Hart,T.,Loane,C.,Brooks,D.J.,Björklund,A.,Odin,P.,Piccini,P。,&Politis,M。(2015年)。 苍白的血清素能功能在帕金森氏病障碍症中的作用:一项正电子发射断层扫描研究。 衰老的神经生物学,36(4),1736– 1742。 38。 胎儿细胞移植后的运动障碍:帕金森氏症:一项宠物研究。 39。Olanow,C。W.,Kordower,J。H.,Lang,A。E.和Obeso,J。A.(2009)。帕金森氏病的多巴胺能移植:当前的状态和未来前景。神经病学年鉴,66(5),591–596。36。Galpern,W。R.,Corrigan-Curay,J.,Lang,A.E.,Kahn,J.,Tagle,D.,Barker,R.A.(2012)。临床试验中的假神经外科手术疾病的神经外科疾病:科学和道德考虑。柳叶刀神经病学,11(7),643–650。37。Smith,R.,Wu,K.,Hart,T.,Loane,C.,Brooks,D.J.,Björklund,A.,Odin,P.,Piccini,P。,&Politis,M。(2015年)。苍白的血清素能功能在帕金森氏病障碍症中的作用:一项正电子发射断层扫描研究。衰老的神经生物学,36(4),1736– 1742。38。胎儿细胞移植后的运动障碍:帕金森氏症:一项宠物研究。39。MA,Y.,Feigin,A.,Dhawan,V.,Fukuda,M.,Shi,Q.,Greene,P.,Breeze,R.,Fahn,S.,Freed,C。,&Eidelberg,D。(2002)。 神经病学年鉴,52(5),628–634。 Barker,R。A. (2019)。 设计帕金森氏病的基于干细胞的多巴胺细胞替代试验。 自然医学,25(7),1045–1053。 40。 Williams-Gray,C。H.,Evans,J。R.,Goris,A.,Foltynie,T.,Ban,M.,Robbins,T。W.,Brayne,C.,Kolachana,B.S.,Weinberger,D.R. (2009)。 帕克森氏病的独特认知综合症:竞选队队的5年随访。 大脑,132(PT 11),2958–2969。 41。 Kelly,C。M.,Presixed,S.V.,Torres,E.M.,Harrison,A.W.,Williams,D.,Scherf,C.,Weyrauch,U.M.,Lane,E.L.,E.L.,E.L.,N.D. 妊娠的医学特征:用于神经退行性疾病的细胞替代疗法的可行组织。 细胞移植,20(4),503–513。 42。 Thomson,J。 A.,Iskovitz-Eldor,J.,Shapiro,S.S.,Waknitz,M.A.,Swiergiel,J.J.,Marshall,V.S。,&Jones,J.M。(1998)。 源自人胚泡的胚胎干细胞系。 Science,282(5391),1145–1147。 43。 高桥,K.,Tanabe,K.,Ohnuki,M.,Narita,M.,Ichisaka,T.,Tomoda,K。,&Yamanaka,S。(2007)。 通过定义的因素从成年人类成纤维细胞中诱导多能干细胞。 细胞,131(5),861–872。 44。 A. (2001)。MA,Y.,Feigin,A.,Dhawan,V.,Fukuda,M.,Shi,Q.,Greene,P.,Breeze,R.,Fahn,S.,Freed,C。,&Eidelberg,D。(2002)。神经病学年鉴,52(5),628–634。Barker,R。A.(2019)。设计帕金森氏病的基于干细胞的多巴胺细胞替代试验。自然医学,25(7),1045–1053。40。Williams-Gray,C。H.,Evans,J。R.,Goris,A.,Foltynie,T.,Ban,M.,Robbins,T。W.,Brayne,C.,Kolachana,B.S.,Weinberger,D.R.(2009)。帕克森氏病的独特认知综合症:竞选队队的5年随访。大脑,132(PT 11),2958–2969。41。Kelly,C。M.,Presixed,S.V.,Torres,E.M.,Harrison,A.W.,Williams,D.,Scherf,C.,Weyrauch,U.M.,Lane,E.L.,E.L.,E.L.,N.D.妊娠的医学特征:用于神经退行性疾病的细胞替代疗法的可行组织。细胞移植,20(4),503–513。42。Thomson,J。A.,Iskovitz-Eldor,J.,Shapiro,S.S.,Waknitz,M.A.,Swiergiel,J.J.,Marshall,V.S。,&Jones,J.M。(1998)。 源自人胚泡的胚胎干细胞系。 Science,282(5391),1145–1147。 43。 高桥,K.,Tanabe,K.,Ohnuki,M.,Narita,M.,Ichisaka,T.,Tomoda,K。,&Yamanaka,S。(2007)。 通过定义的因素从成年人类成纤维细胞中诱导多能干细胞。 细胞,131(5),861–872。 44。 A. (2001)。A.,Iskovitz-Eldor,J.,Shapiro,S.S.,Waknitz,M.A.,Swiergiel,J.J.,Marshall,V.S。,&Jones,J.M。(1998)。源自人胚泡的胚胎干细胞系。Science,282(5391),1145–1147。43。高桥,K.,Tanabe,K.,Ohnuki,M.,Narita,M.,Ichisaka,T.,Tomoda,K。,&Yamanaka,S。(2007)。 通过定义的因素从成年人类成纤维细胞中诱导多能干细胞。 细胞,131(5),861–872。 44。 A. (2001)。高桥,K.,Tanabe,K.,Ohnuki,M.,Narita,M.,Ichisaka,T.,Tomoda,K。,&Yamanaka,S。(2007)。通过定义的因素从成年人类成纤维细胞中诱导多能干细胞。细胞,131(5),861–872。44。A.(2001)。Zhang,S.-C.,Wernig,M.,Duncan,I.D.,Brüstle,O。,&Thomson,J.在人类胚胎干细胞中的移植神经性神经术的体外分化。 自然生物技术,19(12),1129–1133。 45。 Perrier,A。L.,Tabar,V.,Barberi,T.,Rubio,M.E.,Bruses,J.,Topf,N.,Harrison,N。L.,&Studer,L。(2004)。 中脑多巴胺神经元来自人类胚胎干细胞。 美国国家科学院会议录,101(34),12543-12548。 46。 Sonntag,K.-C.,Pruszak,J.,Yoshizaki,T.,Van Arensbergen,J.,Sanchez- Pernaute,R。,&Isacson,O。 (2007)。 使用骨形态学蛋白拮抗剂Noggin noggin,神经上皮上的前体和中脑样多巴胺能神经元的产率提高。 干细胞,25(2),411–418。 47。 sánchez-Pernaute,R.,Studer,L.,Bankiewicz,K。S.,Major,E。O.,&McKay,R。D. G.(2001)。 体外产生和前体衍生的人多巴胺神经元的移植。 神经科学研究杂志,65(4),284–288。 48。 Kim,J.-H.,Auerbach,J.M.,Rodríguez-Gómez,J. A.,Velasco,I.,Gavin,D.,Lumelsky,N. 源自的多巴胺神经元在人类胚胎干细胞中的移植神经性神经术的体外分化。自然生物技术,19(12),1129–1133。45。Perrier,A。L.,Tabar,V.,Barberi,T.,Rubio,M.E.,Bruses,J.,Topf,N.,Harrison,N。L.,&Studer,L。(2004)。中脑多巴胺神经元来自人类胚胎干细胞。 美国国家科学院会议录,101(34),12543-12548。 46。 Sonntag,K.-C.,Pruszak,J.,Yoshizaki,T.,Van Arensbergen,J.,Sanchez- Pernaute,R。,&Isacson,O。 (2007)。 使用骨形态学蛋白拮抗剂Noggin noggin,神经上皮上的前体和中脑样多巴胺能神经元的产率提高。 干细胞,25(2),411–418。 47。 sánchez-Pernaute,R.,Studer,L.,Bankiewicz,K。S.,Major,E。O.,&McKay,R。D. G.(2001)。 体外产生和前体衍生的人多巴胺神经元的移植。 神经科学研究杂志,65(4),284–288。 48。 Kim,J.-H.,Auerbach,J.M.,Rodríguez-Gómez,J. A.,Velasco,I.,Gavin,D.,Lumelsky,N. 源自的多巴胺神经元中脑多巴胺神经元来自人类胚胎干细胞。美国国家科学院会议录,101(34),12543-12548。46。Sonntag,K.-C.,Pruszak,J.,Yoshizaki,T.,Van Arensbergen,J.,Sanchez- Pernaute,R。,&Isacson,O。(2007)。使用骨形态学蛋白拮抗剂Noggin noggin,神经上皮上的前体和中脑样多巴胺能神经元的产率提高。干细胞,25(2),411–418。47。sánchez-Pernaute,R.,Studer,L.,Bankiewicz,K。S.,Major,E。O.,&McKay,R。D. G.(2001)。体外产生和前体衍生的人多巴胺神经元的移植。神经科学研究杂志,65(4),284–288。48。Kim,J.-H.,Auerbach,J.M.,Rodríguez-Gómez,J. A.,Velasco,I.,Gavin,D.,Lumelsky,N. 源自的多巴胺神经元Kim,J.-H.,Auerbach,J.M.,Rodríguez-Gómez,J.A.,Velasco,I.,Gavin,D.,Lumelsky,N.源自